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S1 Data sets

This section provides technical details on all data sets used in this study. Section S1.1 presents details on the
sampling frame of the study. We focus our analysis on 14 state capitals, Belo Horizonte, Curitiba, Florianópolis,
Goiânia, João Pessoa,Macapá,Manaus, Natal, Porto Alegre, Porto Velho, Rio de Janeiro, Salvador, São Luís and São
Paulo, for which SARS‐CoV‐2 sequence data were publicly available to reconstruct Gamma’s temporal expansion
at city‐level. Availability of these data are key to decompose the factors associated with fluctuations in in‐hospital
fatality rates, and so determined the locations that could be included in the study. Reflecting the geographical ex‐
pansion of COVID‐19 through Brazil over time, our observation periods varied across cities. Section S1.2 presents
the SARS‐CoV‐2 sequence data used in this study. Section S1.3 describes the population sizes that we use in each
state capital as population denominators. Sections S1.4‐S1.7 describe data sets extracted from the SIVEP‐Gripe
data, which is produced by the Brazilian Ministry of Health [1, 2] and provides detailed, patient‐level informa‐
tion on all individuals hospitalised with severe acute respiratory illness. We characterise COVID‐19 attributable
hospital admissions, deaths, and in‐hospital fatality rates based on these data. Section S1.8 presents data from
Brazil’s National Register of Health Facilities (Cadastro Nacional de Estabelecimentos de Saúde (CNES)) [3] on re‐
ported healthcare resources in each location. These data underlie the healthcare pressure indices. Section S1.9
introduces all‐cause death data from Brazil’s Civil Registry [4], and Section S1.10 introduces individual‐level data
on administered vaccine doses, obtained from the Brazilian Ministry of Health website. These data were used
in the Bayesian multi‐strain fatality model to adjust population denominators to the estimated populations that
remain at risk of fatal COVID‐19 outcomes in each location. All data are freely available at the github repository
https://github.com/CADDE‐CENTRE/covid19_brazil_hfr.

S1.1 Choice of study locations and observation period

Individual patient records in Brazil’s SIVEP‐Gripe data do not contain linked SARS‐CoV‐2 sequence data. To char‐
acterise Gamma’s effect on in‐hospital fatality rates, we estimated Gamma’s temporal expansion at population
level in geographically well‐defined locations from publicly available SARS‐CoV‐2 sequence data. We searched
GISAID (https://www.gisaid.org) on June 14, 2021, for sequence data associated with SARS‐CoV‐2 Gamma virus
genome sequences in the 27 federal units (26 Brazilian states and the Federal District). Gamma genome data
was available for 16 federal units, Amapá, Amazonas, Bahia, Goiás, Maranhão, Mato Grosso do Sul, Minas Gerais,
Paraíba, Paraná, Rio de Janeiro, Rio Grande do Norte, Rio Grande do Sul, Rondônia, Santa Catarina, São Paulo,
and Tocantins. We focused our analysis on the state capitals in these federal units because key variables such
as population size, vaccination coverage and healthcare indicators were more directly available at the level of
state capitals. We assumed that the frequency of Gamma in state capitals is similar to the frequency of Gamma
across that state, measured by data available in GISAID and metadata available from Rede Genômica FioCruz that
provides more representative sampling [5]. Two state capitals, Palmas and Campo Grande, were excluded from
further analysis due to limited, weekly age‐specific COVID‐19 hospital admission and death counts among resi‐
dents reported in SIVEP‐Gripe. The cities in our sampling frame were thus Belo Horizonte, Curitiba, Florianópolis,
Goiânia, João Pessoa, Macapá, Manaus, Natal, Porto Alegre, Porto Velho, Rio de Janeiro, Salvador, São Luís and
São Paulo.

Reflecting the geographical expansion of COVID‐19 through Brazil over time, our observation periods varied across
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State capital State Observation period SARS‐CoV‐2 Gamma variant
Start End Estimated emergence First detection

(posterior median) (observed)

Belo Horizonte Minas Gerais 06/04/2020 26/07/2021 15/02/2021 15/12/2020
Curitiba Paraná 02/03/2020 26/07/2021 26/01/2021 22/10/2020
Florianópolis Santa Catarina 09/03/2020 26/07/2021 08/01/2021 11/12/2020
Goiânia Goiás 16/03/2020 26/07/2021 19/01/2021 28/11/2020
João Pessoa Paraíba 09/03/2020 26/07/2021 21/01/2021 20/12/2020
Macapá Amapá 30/03/2020 26/07/2021 16/01/2021 14/12/2020
Manaus Amazonas 24/02/2020 26/07/2021 04/12/2020 04/12/2020
Natal Rio Grande do Norte 16/03/2020 26/07/2021 26/01/2021 06/12/2020
Porto Alegre Rio Grande do Sul 02/03/2020 26/07/2021 10/01/2021 21/11/2020
Porto Velho Rondônia 30/03/2020 26/07/2021 18/01/2021 25/12/2020
Rio de Janeiro Rio de Janeiro 16/03/2020 26/07/2021 19/01/2021 29/11/2020
Salvador Bahia 16/03/2020 26/07/2021 28/12/2020 02/12/2020
São Luís Maranhão 24/02/2020 26/07/2021 19/01/2021 04/12/2020
São Paulo city São Paulo 20/01/2020 26/07/2021 01/02/2021 01/11/2020

Table S4: State capitals included and observation periods, with estimated dates of Gamma’s emergence and first
detection based on GISAID data.

cities. The start date was defined as the Monday after the date on which at least 2.5 patients with suspected
or confirmed COVID‐19 per 100,000 population were hospitalized in each location. To minimise the impact of
reporting delays to SIVEP‐Gripe on our inferences, the end date was set to 26 July 2021. Figure 1 in the main text
and Table S4 report the 14 cities investigated in this study, and the corresponding observation periods.

S1.2 GISAID metadata to characterise Gamma’s temporal expansion

Collection dates of all Brazilian Gamma sequences available were obtained from GISAID on June 28, 2021, with
collection dates between November 1, 2020 andMarch 31, 2021. Collection dates could be associated with 8,609
sequences, among which 94 entries were removed due to incomplete collection dates, and 14 were removed
because they were duplicates. Out of the remaining 8,501 samples, we retained the 7,221 samples collected in
the 14 Brazilian states, which are shown in Figure S18. Most of the sequence data were from São Paulo (1104 viral
genomes), few from Rondônia (9), and on average states reported 158 genomes. Acknowledgment tables with
GISAID IDs are available at acknowledgments_GISAID_Tables in the github repository.

S1.3 Population denominators

National population estimates by sex and age were retrieved from the 2020 National Household Sample Survey
COVID‐19, Pesquisa Nacional por Amostra de Domicílios COVID‐19 (PNAD COVID‐19) [6] by the Brazilian Institute
of Geography and Statistics (IBGE). BetweenMay and September 2020, over 1.888.560 interviewswere conducted
by IBGE in all state capitals and the Federal District of Brazil, from which population sizes were estimated for men
and women by 1‐year age bands. The population size projections were adjusted so that at most 99% of residents
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Figure S18: SARS‐CoV‐2 sequence data obtained from GISAID in the 14 states in which the 14 state capitals are
located.

received at least one vaccine dose during the observation period as further described in Section S6. Figure S19
illustrates the PNDAc 2020 population size projections along with these adjustments.
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The population sizes were then stratified into the following age bands

A =
{
0− 15, 16− 29, 30− 39, 40− 49, 50− 59, 60− 69,

70− 74, 75− 79, 80− 84, 85− 89, 90 +
}
,

(S1)

and we denote by nl,a the (adjusted) projected 2020 population sizes in location l and age band a. Children and
younger adults were grouped by 15 year age bands, middle aged adults were grouped by 10 year age bands, and
older adults were grouped by 5 year age bands to reflect exponentially increasing infection severity of SARS‐CoV‐
2 [7]. The resulting population size estimates are available at inst/data/PNADc_vaxadj_population_210802.csv in
the github repository.

S1.4 Hospital admissions with reported severe acute respiratory illness

The first data set that we extracted from SIVEP‐Gripe describes for each location during our observation period
the incidence of severe acute respiratory illness hospitalisations due to any cause, not restricted to COVID‐19.
This data set is used in Section S5 to calculate healthcare pressure indices, and with this aim in mind captures
hospitalised patients in each location regardless of residency or vaccination status.

All patients presenting to Brazilian hospitals with severe acute respiratory illness (SARI) must be notified onto
the SIVEP‐Gripe platform, which records their clinical details as well as personal information such as city of resi‐
dence, city of hospitalisation, and age [1, 2]. Following reporting directives issued since the start of the COVID‐19
pandemic [8, 9], the SIVEP‐Gripe data also capture COVID‐19 attributable deaths that occurred out of hospital,
and that were known to data reporters. To exclude out‐of‐hospital deaths reported to SIVEP‐gripe, we retained
reported cases who as of 19 September 2021 had a non‐empty hospital admission date, or did not die on the
same date. All SARI cases were stratified into the age strata described in equation (S1). Table S5 reports the total
number of hospital admissions extracted from the SIVEP‐Gripe data set.

S1.5 COVID‐19 attributable hospital admissions in residents and non‐residents without ev‐
idence of vaccination

The second data set describes COVID‐19 attributable hospital admissions and associated metadata during the
observation period among residents and non‐residents in each location. This data set is (only) used to account for
underreporting of deaths in hospitalised and unvaccinated patients with unknown clinical outcomes (Section S3).

During the course of hospital admission, the attending team, in conjunctionwith local health authorities, establish
a final classification of SARI diagnosed patients, integrating diagnostic tests, epidemiological links to other cases
and clinical information. The data and classifications are retrospectively updated in the latest data release. We
defined as COVID‐19 attributable hospital admissions all patients of class 4, 5 or missing classification, comprising
PCR‐confirmed COVID‐19 infections, clinically diagnosed COVID‐19 infections, and patients with severe acute res‐
piratory infection and no evidence of infection with other respiratory pathogens. Table S5 shows the proportion
of hospitalised patients in our observation periods of each location by SIVEP‐Gripe classification.
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Figure S20: Weekly, COVID‐19 attributable hospital admissions stratified by residence status (lighter shade for
non‐residents and darker shade for residents) and vaccination status (colours) in 14 cities in Brazil. Data are from
the SIVEP‐Gripe platform of the Brazilian Ministry of Health and as of 20 September 2021. The black line indicates
the hospitalised patients selected in this study.
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SIVEP‐Gripe classification
1‐3 4 5

City Hospital Other Suspected Confirmed Unknown
admissions Cause COVID‐19 COVID‐19

Belo Horizonte 72221 0.79% 42.56% 51.77% 4.87%
Curitiba 54894 2.27% 31.60% 64.07% 2.06%
Florianópolis 8854 5.20% 33.98% 59.06% 1.76%
Goiânia 36083 1.29% 20.95% 72.84% 4.92%
João Pessoa 18447 0.49% 26.57% 63.26% 9.68%
Macapá 4436 0.47% 4.26% 94.32% 0.95%
Manaus 31404 1.37% 20.82% 76.77% 1.03%
Natal 15749 1.16% 23.84% 66.94% 8.06%
Porto Alegre 28793 1.67% 23.88% 73.21% 1.24%
Porto Velho 9889 1.22% 14.71% 78.11% 5.96%
Rio de Janeiro 105645 0.70% 17.11% 76.29% 5.90%
Salvador 43072 1.24% 26.40% 71.54% 0.82%
São Luís 15260 3.40% 29.31% 54.95% 12.34%
São Paulo 257673 1.39% 27.98% 65.49% 5.14%

Table S5: Reported SARI cases, hospital admissions, and SIVEP‐Gripe classification.

Among the COVID‐19 attributable hospital admissions, we excluded patientswith evidence in the SIVEP‐Gripe data
of having had at least one vaccine dose administered before hospitalisation. For brevity, we refer to these patients
as unvaccinated in the Supplementary Text. Here, we denote the COVID‐19 attributable hospital admissions in
unvaccinatedpatients in location l and agebandaonday tbyhl,a,t. Similarly, wedenote theCOVID‐19 attributable
hospital admissions in location l and age band a in week w by

hl,a,w =
∑
t∈w

hl,a,t. (S2)

Figure S20 illustrates the weekly number of COVID‐19 attributable hospital admissions by residency and vaccina‐
tion status.

S1.6 COVID‐19 attributable hospital admissions in residents without evidence of vaccina‐
tion

The third data describes weekly, COVID‐19 attributable hospital admissions and associated metadata during the
observation period in unvaccinated residents. This is our primary data, and used to estimate COVID‐19 in‐hospital
fatality rates. We focus on residents because our inferences are linked to further data on the city‐level populations,
i. e. individuals that are resident in each location.

Of the COVID‐19 attributable hospital admissions in unvaccinated patients (Section S1.5), we retained those pa‐
tients who were resident in each location. We denote the COVID‐19 attributable, unvaccinated hospitalised res‐
idents in location l and age band a day t by hres

l,a,t. Similarly, we denote the COVID‐19 attributable, unvaccinated
hospitalised residents in location l and age band a in week w by

hres
l,a,w =

∑
t∈w

hres
l,a,t. (S3)
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Figure S20 shows that the contribution of non‐residents to hospitalised patients differed substantially across lo‐
cations.

S1.7 COVID‐19 attributable deaths among residents

The SIVEP‐Gripe platform reports deaths that occurred in‐hospitals and, following reporting directives issued since
the start of the COVID‐19 pandemic [8, 9], deaths that occurred out of hospital, and that were known to data re‐
porters. These data are used in Section S6 to adjust population denominators over time. We retained all reported
COVID‐19 attributable deaths in residents in location l and age band a that occurred in weekw, and denote them
by dres‐SIVEPl,a,w .

S1.8 Resources in healthcare facilities

To characterise time trends in healthcare pressure in each location, we obtained monthly data on healthcare
resources reported by healthcare facilities to the National Register of Health Facilities (Cadastro Nacional de Es‐
tabelecimentos de Saúde ‐ CNES) [3]. Data on healthcare resources are mandatory to report by both public and
private healthcare facilities. This section provides technical details on our definitions of healthcare resources.

Overall, we aggregated for each location monthly data on personnel (nurses, nurse assistants, physiotherapists,
physicians and critical care specilists i. e. intensive care physicians) and equipment (critical care beds, critical care
bedswith ventilators, ICUbeds, ventilators). The data are available in file inst/data/IPEA_ICUbeds_physicians_210928.csv
in the github repository, and are as of September 15, 2021. Figure S5 summarises the healthcare resources per
100,000 population based on the 2020 population size projections described in Section S1.3. We use the data on
healthcare resources to define the healthcare pressure indices shown in Figure 3.

To count resources for treatment of severe COVID‐19, we considered several types of ICU beds reported to CNES.
ICU type I beds (code 74) refer to an older standard that is phased out since 2017, and were not counted. Type II
ICU beds (code 75) represent the minimum requirement for severe cases of COVID‐19 requiring ventilation. Type
III ICU beds (code 76) are, by regulation, reserved to ICU patients with multiple acute failures of vital organs, or
to patients at risk of developing them, with an immediate threat to life [10]. Since March 2020, new ICU beds
were created to try to minimise the immediate risk of healthcare system collapse (code 51). These ICU beds
were intended exclusively for treatment of COVID‐19, and are designated COVID‐19 type II ICU beds. At least one
microprocessor‐controlled lung ventilator must be available for every two ICU type II, ICU type III, and COVID type
II beds. Considering that both a ventilator and an ICU bed are necessary for adequate treatment of severe COVID‐
19, we only counted adult ICU beds with a ventilator per month and location, defined as the minimum number of
available ventilators and the number of adult ICU type II, ICU type III, COVID‐19 type II beds in the same healthcare
facility that are reported to CNES, which we then aggregated across healthcare facilities in the same location.

We further considered critical care beds, with and without controlling for ventilators, to more broadly quantify
beds used for the treatment of critical or severe cases of COVID‐19 according to national guidelines ([11], p.19).
Critical care beds summed, per month and location, the number of adult ICU type II, ICU type III beds, COVID‐19
type II and intermediate care beds (code 95) reported to CNES. We considered both this sum and the minimum
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between the sumand thenumber of available ventilators in the samehealthcare facility, whichwe then aggregated
across healthcare facilities in the same location.

To guard against potential reporting differences or bias in reported bed types, we also considered monthly counts
of available ventilators as resource. The number of reported ventilators (respirador or ventilador, code 64) does
not include ventilators already held for ICU or critical care beds. Thus, for each healthcare facility, we counted the
number of lung ventilators reported to CNES, and added one ventilator for every two reported ICU type II, type
III, or COVID‐19 type II beds, and added one ventilator for every three reported intermediate beds. We then again
aggregated across healthcare facilities in the same location.

Physicians summed, per month and location, the number of medical professionals as identified by name and their
professional health card number (Cartão Nacional de Saúde do professional – CNS_prof) within the occupational
job families formedical doctors (families CBO2231, 2251, 2252,2253) according to the 2002 Brazilian Classification
of Occupations (Classificação Brasileira de Ocupações – CBO).

Critical care specialists (or intensive care specialists) summed, per month and location, the number of intensive
care specialists reported within the occupational job family CBO 225150.

Nurses summed, per month and location, the number of nurses reported within the occupational job family CBO
2235. Nurse assistants summed, per month and location, the number of individuals reported within the occu‐
pational job family CBO 3222. In Brazil, the term nurses is used for professionals holding a university degree in
Nursing, which is a 5‐year training program, while the term technical nurse or nurse assistant is used for individuals
that hold a nursing assistant certificate, obtained after a 18‐24 months high‐school level training program. Phys‐
iotherapists summed, per month and location, the number of physiotherapists reported within the occupational
job family CBO 2236. In Brazil, physiotherapists are professionals holding a university degree in Physiotherapy,
which is a 5‐year training program.

S1.9 Excess deaths

To specify in the Bayesian multi‐strain fatality rate model the population at risk of severe COVID‐19, we obtained
daily, age‐specific, all‐cause death records from the Brazilian Civil Registry [4], as well as daily, age‐specific COVID‐
19 specific death records from the same data source. Data on the exact date, city and state where death occurred,
age and sex of the deceased, and whether death occurred in or out of hospital were obtained from [12]. In the
data, the cause of death is classified as COVID‐19 related if COVID‐19 or similar terms are mentioned anywhere in
the death certificate.

The all‐cause deaths reported in the Civil Registry are stratified by the age bands

B =
{
0− 9, 10− 19, 20− 29, 30− 39, 40− 49, 50− 59, 60− 69, 70− 79,

80− 89, 90− 99, 100 +
}
.

(S4)

To match these age bands with our age bands (S1), we weighted the reported deaths in larger age brackets than
ours by the population proportion in our age bracket. For example, we calculated

vall‐causel,10−15,t =
nl,10−15

nl,10−19
vall‐causel,10−19,t, (S5)
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Figure S21: Daily age‐specific excess deaths per 100,000 individuals in Belo Horizonte, Curitiba, Florianópolis,
Goiânia, João Pessoa. Daily excess deaths were calculated from all‐cause deaths reported by the Brazilian Civil
Registry. The start date of the observation period and the date of Gamma’s detection in each city are indicated as
vertical dotted grey lines.
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where nl,10−15 and nl,10−15 are the 2020 population projections for location l in the corresponding age bands
described in Section S1.3, and vall‐causel,10−19,t are the all‐cause deaths of age 10‐19 reported in the Civil Registry in
location l. Records in smaller age brackets were summed. The COVID‐19 related deaths reported in the Civil
Registry were weighted and summed analogously to harmonise them into the age bands used in this study.

We then derived the excess deaths in location l, age band a on day t since January 1, 2020 by subtracting from
the all‐cause deaths vall‐causel,10−15,t the smoothed, 7‐day rolling mean of the all‐cause deaths on the same day in 2019.
Since 2020was a leap year, we duplicated the all‐cause death counts of February 28, 2019 for an artificial February
29, 2019. Specifically, we calculated

vexcessl,a,t = vall‐causel,a,t − 1

7

t+3∑
s=t−3

vall‐causel,a,s−366. (S6)

Figure S21 illustrates the derived excess deaths for five cities, indicating that the excess deaths were in most state
capitals higher after than before Gamma’s detection (vertical grey line).

The daily excess deaths and COVID‐19 related deaths reported by the Brazilian Civil Registry were then aggregated
by week,

vexcessl,a,w =
∑
t∈w

vexcessl,a,t (S7)

vcovidl,a,w =
∑
t∈w

vcovidl,a,t . (S8)

S1.10 Administered vaccine doses among residents

To specify in the Bayesianmulti‐strain fatality ratemodel the population at risk of severe COVID‐19, we further ob‐
tained individual‐level data on administered vaccine doses from the Brazilian Ministry of Health database [13] on
05 August 21. This section provides technical details on how the data were pre‐processed to estimate vaccine cov‐
erage in city populations. Our preprocessing steps are in file ’inst/utils/preprocess_vaccination_data_210804.R’
and the preprocessed data are in file inst/data/saudegovbr_vaccinations_210805.rds in the github repository.

For all records, entries with an empty dose field were discarded. In one instance, the same vaccine type was
reportedwithmultiple names, and for this reason both “Covid‐19‐AstraZeneca” and “Vacina Covid‐19 ‐ Covishield”
dose entries were classified as “Covishield”. Considering records of each patient, we assumed that individual
patient identifiers are unique. In the case the second dose was supposedly administered before the first dose, we
decided to swap the dates of administration for the first and second dose. If the record for the first dose did not
exist, we classified the second dose as the first. Similarly, if the date of administration of both doses coincided,
the record for the second dose was ignored. For a small proportion of individuals, more than 2 administrations of
the same dose were reported. In the case this issue concerned the first dose, only the first administration record
was retained in chronological order. If the issue concerned the second dose, only the last administration record
was retained. We found multiple administration records of the same dose on the same day. This issue was due
to duplicate patient entries with non‐unique date of birth or sex classification. In this case, entries were resolved
by considering the most common value across multiple patient observations. When individuals were supposedly
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administered two different vaccines as first and second dose, we changed the vaccine type of the first dose to
make it consistent with the second dose vaccine type.

To calculate vaccine coverage in residents in each location, the individual‐level vaccine data were aggregated by
location of residence into the number of individuals vk,1l,a,w in location l and age band a that received a first dose of

vaccine k by weekw, and similarly into the number of individuals vk,2l,a,w in location l and age band a that received
two doses of vaccine k as of week w. We used the age of each patient on the first of January 2021 to stratify
patients into our age bands. Our calculations to determine vaccine coverage are given in Section S6.

S2 Sequence‐based analyses to dateGamma’s emergence and trackGamma’s
expansion

S2.1 Data selection for dating Gamma’s emergence

To date the emergence of the SARS‐CoV‐2 Gamma variant in each location, only high coverage SARS‐CoV‐2 Gamma
genome sequences with complete date of collection available on GISAID [14] by 14 June 2021 with dates of collec‐
tion until 31 March 2021 were included. The metadata associated with the sequence data used for phylogenetic
analysis thus corresponds to a subset of the metadata used to investigate replacement dynamics in each city, and
a total of 2,212 were selected for the 14 states under study (Minas Gerais, Paraná, Santa Catarina, Goiás, Paraíba,
Amapá, Amazonas, Rio Grande do Norte, Rio Grande do Sul, Rondônia, Rio de Janeiro, Bahia, Maranhão, and São
Paulo). This data set included 5 sequences that had been recovered from the International Guarulhos Airport in
São Paulo.

S2.2 Maximum likelihood phylogenetic tree estimation and data quality exploration

To confirm lineage classifications, all sequences were subjected to a Pango lineage classification version 3.0.6
(Pangolearn v.1.2.12 and scorpio lineage), and a few sequences were excluded from further analysis. Then, the
reference strainWH04 (GISAID EPI_ISL_406801) was appended to the sequence dataset beforemultiple sequence
alignment using MAFFT v7 [15]. After removing untranscribed terminal regions, the resulting multiple sequence
alignment had a length of 29,409 nucleotides. Maximum likelihood phylogenetic trees were estimated using
IQTree v2 [16] under the Jukes Cantor (JC69) substitutionmodel [17]. We next used TempEst v.1.5.3 [18] to regress
root‐to‐tip distances against sampling dates and identify data quality and data annotation problems prior to fur‐
ther phylogenetic analysis. Specifically, we discarded virus genomes characterized by a genetic distance to WH04
of more than 4 standard deviations from the epi‐week mean genetic distance to WH04 [19]. A total of 10 se‐
quences were excluded from subsequent phylogenetic analysis, as shown in Figure S22. The GISAID identifiers of
the excluded sequences were EPI_ISL_1821206, EPI_ISL_2249444, EPI_ISL_1821208 (earliest available sequence
from São Paulo, dated 2020‐11‐03), EPI_ISL_1821217, EPI_ISL_2249440 (earliest available sequence from Rio de
Janeiro, dated 2020‐11‐18), EPI_ISL_2249443, EPI_ISL_2241496 (earliest available sequence from Paraíba, dated
2020‐10‐01), EPI_ISL_1715135, EPI_ISL_ 1821257, and EPI_ISL_2249437.
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R = 0.3748
R squared = 0.1404
Slope = 3.973E-4 s/s/y
Date range = 0.4952 y

(a)With outliers
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Figure S22: Root‐to‐tip regression of genetic divergence against dates of sample collection. Red tips in panel a) cor‐
respond to the 10 sequences discarded from subsequent analysis. Grey tips in figure b) correspond to sequences
kept for subsequent phylogenetic analysis.

S2.3 Bayesian phylogenetic analysis

Estimating time trees for large alignments can be computationally intractable. Thus we follow a computation
strategy similar to du Plessis et al. [19] and Gutierrez et al. [20] that involves: (i) estimating an evolutionary rate
using a subsample of the genome dataset of interest, and (ii) using a simpler computational approach to estimate
time trees for the complete genome dataset. For step (i), we randomly selected a maximum of 20 sequences per
state (except for Paraíba and Rondônia, which only had 15 and 9 sequences available during the study period).
This generated a dataset of 264 genomes sequences. Sequences with earliest and latest dates of collection from
each state were kept in the alignment to increase temporal signal of the resulting dataset. We used BEAST v.1.10.4
[21] to estimate an evolutionary rate under a Hasegawa Kishino‐Yano (HKY) [22] substitution model and a strict
molecular clock with a continuous‐time Markov chain prior. We used a Bayesian skygrid with 10 grid points as a
demographic tree prior [23]. The BEAST xml file is available at inst/utils/BEAST_thorney_P1.xml in our https://
github.com/CADDE‐CENTRE/covid19_brazil_hfr repository. FourMarkov ChainMonte Carlo (MCMC) chains were
run for 50 million steps, sampling parameters and trees every 50,000 steps. Convergence of the MCMC chains
was assessed using Tracer v.1.7 [24]. For step (ii), the complete dataset was analysed using BEAST v1.1.0.5 [25]
using a newly developed approach that significantly reduces computation time. This approach takes in a rooted
phylogenetic ML tree (instead of an alignment) and rescales its branches into time units. The likelihood of each
branch length is modelled as a Poisson distribution with a mean that is directly proportional to the clock rate [26,
27]. We used a rate of 4.864 × 10−4 substitutions/site/year based on the median clock rate estimate obtained
from step (i). We defined a coalescent Skygrid prior and used the best‐fitting IQTree ML tree rooted in TempEst
as a starting data tree. Two independent MCMC chains were run for 1,000 million MCMC steps and combined
after discarding 10% of the run as burn‐in to generate an empirical posterior tree distribution. Convergence was
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assessed using Tracer v.1.7 [24].

S2.4 Estimation of earliest date of SARS‐CoV‐2 Gamma circulation in each location

We used a 14‐state asymmetric discrete Bayesian molecular clock phylogeographic approach [28] implemented
in BEAST v.1.0.4 [21] to infer ancestral state locations on an empirical distribution of 500 posterior time‐trees. For
sequenceswith known travel history, we assigned the state of infection instead of state of reporting. We estimated
unknown state locations for the sequences collected at the International Guarulhos Airport in São Paulo. We
tracked the complete jump history of viral movement events between each pair of states [29, 30, 31]. We used
a recently developed tool, the TreeMarkovJumpHistoryAnalyzer, which collects Markov jumps and their timings
from a posterior tree distribution withMarkov jump histories [32], available at inst/utils/P.1_MJumps_complete_
history.xml in our https://github.com/CADDE‐CENTRE/covid19_brazil_hfr repository. To date the most common
recent ancestor of the earliest local transmission cluster in each state, we used a customised R script to summarise
the posterior probability distribution densities for the earliest time of the introduction leading to≥2 descendants
in each of the 14 states. Throughout, we denote for each location the posterior median of the earliest week in
which Gammawas estimated to circulate locally byW emerge−Γ

l , and report the posterior median emergence dates
in Supplementary Table S4.

S2.5 Tracking Gamma’s expansion in each location

To assess the spatio‐temporal expansion of Gamma in each of the 14 cities, we based our investigations on
Gamma’s variant frequency in SARS‐CoV‐2 sequence samples obtained in each location. All 7,221 sequences de‐
scribed in Section S1.2 were used for this analysis, and aggregated by weekw of sample collection in each location
l. We assumed that the frequency of Gamma in state capitals is similar to the frequency of Gamma across that
state, measured by data available in GISAID and metadata available from Rede Genômica FioCruz that provides
more representative sampling [5]. We denote the week index in which Gamma was in each location first detected
by W detect−Γ

l (see Supplementary Table S4), the number of sequenced genotypes in location l and collection
week w by sl,w, and the number sequenced genotypes attributed to the Gamma variant with Pangolin by sΓl,w.
Figure S18 indicates the sample sizes in each location, and Figure S1 shows the proportion of Gamma sequences
over time in each location.

S3 Controlling for hospitalised patients with unknown outcomes

To characterise in‐hospital fatality rates, we focused on the weekly COVID‐19 attributable hospital admissions
hres
l,a,w among residents with no evidence of vaccination prior to hospitalisation in each location l and age band

a, and their reported clinical outcomes as of 19 September 2021 (Section S1.6). Patients were either discharged
alive, died, or had an unknown outcome, which respectively we denote by hres‐A

l,a,w, h
res‐D
l,a,w and hres‐U

l,a,w. Figure 2 in
the main text and Figure S23 illustrate that a large number of hospitalised patients had unreported outcomes,
typically since Gamma’s detection in each location, which make interpretation of the raw data challenging. A
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Figure S23: Clinical outcomes of COVID‐19 attributable hospitalised admissions in unvaccinated residents in 14
cities in Brazil. Data are from the SIVEP‐Gripe platform of the Brazilian Ministry of Health and as of 20 Septem‐
ber 2021. The weekly COVID‐19 attributable hospital admissions among residents are shown by outcome as of
database closure.
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subset of individuals withunknown outcome had an ICU start date and no ICU end date, and are in the figure
shown separately. This section provides technical details on how death counts were adjusted for underreporting
in hospitalised patients with unknown outcomes.

First, we calculated the proportion of deaths among patients with known outcomes, for each location and age
band over the twoweeks prior to the currentweek of interest. Second, we projected COVID‐19 attributable deaths
among COVID‐19 attributable hospitalised residents with currently unknown outcomes based on this time‐varying
and age‐specific proportion. Specifically, we calculated a 2‐week rolling mean version of daily COVID‐19 fatality
rates among individuals with known outcomes in location l, age band a and day t via

zknown‐rollingl,a,t =
1
14

∑t
s=t−14 h

D
l,a,s

1
14

∑t
s=t−14 h

A
l,a,s + hD

l,a,s

. (S9)

Equation (S9) was calculated over all COVID‐19 attributable hospitalised patients regardless of residency because
of larger sample sizes in the numerator and denominator, and assuming that fatality rates among residents and
non‐residents are the same in the same location and same age band. Next, we used (S9) to project COVID‐19
attributable deaths among COVID‐19 attributable hospitalisations in residents in location l, age band a and day t
who currently have an unknown outcome, and then summed for each week w,

hres‐proj‐D
l,a,w =

∑
t∈w

zknown‐rollingl,a,t hres‐U
l,a,t . (S10)

This allows us to estimate the number of hospitalised residents in location l, age band a and week w with no
evidence of vaccination prior to hospitalisation who are observed or expected to have a fatal outcome as

hres‐adj‐D
l,a,w = hres‐D

l,a,w + hres‐proj‐D
l,a,w , (S11)

where hres‐D
l,a,w are those with an observed fatal outcome (Section S1.6).

S4 Smoothed age‐standardised COVID‐19 in‐hospital fatality rates

We describe the extent of spatiotemporal variation in the weekly COVID‐19 fatality rate data with a simple mea‐
sure, smoothed age‐standardised in‐hospital fatality rates. We age‐standardise to summarise data across age
bands into a simple time series statistic, and to control for differences in the age composition of city populations.
This section presents technical details on how the smoothed, non‐parametric estimates of age‐standardised in‐
hospital fatality rates were constructed.

We start with the under‐reporting adjusted COVID‐19 attributable deaths in residents in location l, age band a

that were hospitalised in week w, hres‐adj‐D
l,a,w , Equation (S11), and the COVID‐19 attributable hospital admissions in

residents without evidence of vaccination prior to hospital admission, hres
l,a,w, (Section S1.6). Then, we define the

age‐specific in‐hospital fatality rates in location l and age band a in week w as

zl,a,w = hres‐adj‐D
l,a,w

/
hres
l,a,w (S12)

whenever the denominator hres
l,a,w is non‐zero. Figure 1C in the main text illustrates the empirical in‐hospital fa‐

tality rates in Manaus and in each age band. To standardise across age bands, we summed (S12) using as weights
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Figure S24: Age‐standardised in‐hospital COVID‐19 fatality rates. The empirical, age‐standardised fatality rates
are shown as circles whenever the weekly age‐specific fatality rates are well defined for all age groups (i. e. there
was at least one weekly hospital admission for that given age group, week and location). Whenever there were
undefined age‐specific fatality rates, we computed the empirical age‐standardised fatality rates by setting the
undefined values to the closest defined value in time (squares). The smoothed, non‐parametric estimates of the
age‐standardised in‐hospital fatality rates are shown as a solid line. The date of Gamma’s detection is indicated
with vertical dashed lines.
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the proportion of each age band in the population across all cities considered. Specifically, we calculate the un‐
smoothed, age‐standardised COVID‐19 attributable in‐hospital fatality rate among residents in location l in week
w as

zl,w =
∑
a

ncities
a∑

b n
cities
b

zl,a,w, (S13)

where ncities
a is the population in age band a across all cities considered. If zl,a,w is not well defined for a given

age group a, we instead use zl,a,fl,a(w), where fl,a maps the input to the closest week with hres
l,a,w > 0. In cities

such as São Luís, most of the weekly age‐standardised in‐hospital fatality rates needed this adjustment, as can be
observed in Supplementary Figure S24.

Due to the presence of weeks with zero or few COVID‐19 attributable hospital admissions for specific age bands,
the age‐standardised in‐hospital fatality rateswere noisy. To obtain amore stable estimate of the age‐standardised
in‐hospital fatality ratio, we first applied a non‐parametric smoother to the age‐specific in‐hospital fatality rates,
Equation (S12). Specifically, we used the loess smoother as implemented in the R package stats with input argu‐
ments span set to 0.3. Second, we age‐standardised the non‐parametric smoothes in analogy to Equation (S13).
To avoid extrapolating when computing extrema of the smoothed in‐hospital fatality rates, we only considered es‐
timates obtained in thewindowbetween the first and the last weekswithwell‐defined empirical age‐standardised
in‐hospital fatality rates. Figure S24 illustrates the smoothed, age‐standardised in‐hospital fatality rates as a line.

S5 Healthcare pressure indices

In the context of substantial underfunding prior to the pandemic [33, 34] and disparities in health care resources
across and within Brazil’s states [35], we introduce pandemic healthcare pressure indices to monitor in‐hospital
health care load at city level. This section provides technical details of these healthcare pressure indices. All
indices are constructed as a time series measure of healthcare demand per available resource.

We start by considering the number of adult ICU beds in location l and week w, rICU‐bedsl,w (Section S1.8), and the
number of ICU admissions among residents and non‐residents in location l and weekw, which we denote by hICU

l,w,
and which are reported in SIVEP‐Gripe (Section S1.4). Note that here we consider all ICU admissions of residents
and non‐residents, because all ICU admissions add to demand in hospitals. Our first index, ICU admissions per ICU
bed, was then defined by

xICU‐adm‐per‐ICU‐bed‐00
l,w = hICU

l,w

/
rICU‐bedsl,w . (S14)

To account for the fact that additional ICU admissions in prevoius or subsequent weeks could have an adverse
impact on fatality rates of patients admitted in the current week, we also considered rolling sums of the form

xICU‐adm‐per‐ICU‐bed‐0j
l,w =

( j∑
i=0

hICU
l,w+i

)/
rICU‐bedsl,w ,

xICU‐adm‐per‐ICU‐bed‐j0
l,w =

( 0∑
i=−j

hICU
l,w+i

)/
rICU‐bedsl,w ,

xICU‐adm‐per‐ICU‐bed‐jj
l,w =

( j∑
i=−j

hICU
l,w+i

)/
rICU‐bedsl,w ,

(S15)
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for j = 1, . . . , 4. Of these we retained for further analysis the version that correlated most strongly with bi‐
weekly age‐standardised in‐hospital fatality rate analogous to the weekly estimates in equation (S13). For the ICU
admissions per ICU bed index, this was the rolling sum across the current and following two weeks.

All other healthcare pressure indices were constructed in the same way. These are the number of ICU admissions
in this and the following 2weeks per physician, the number of ICU admissions in this and the following 2weeks per
intensive care specialist, the number of ICU admissions in this and the following 2 weeks per nurse, the number of
ICU admissions in this and the following 2 weeks per nurse assistant, the number of ICU admissions in this and the
following 2 weeks per physiotherapist, and the number of ICU admissions in this and the following 2 weeks per
ventilator, and the number of SARI hospital admissions in this and the following 2 weeks per critical care bed, the
number of SARI hospital admissions in this and the following 2 weeks per critical care bed with a ventilator, the
number of SARI hospital admissions in this and the following 2 weeks per ventilator, the number of SARI hospital
admissions in this and the following 2 weeks per nurse, and the number of SARI hospital admissions in this and
the following 2 weeks per physician, respectively defined by

xICU‐adm‐per‐physician‐02
l,w =

( 2∑
i=0

hICU
l,w+i

)/
nphysicians
l,w (S16a)

xICU‐adm‐per‐intensivist‐02
l,w =

( 2∑
i=0

hICU
l,w+i

)/
nintensivist
l,w (S16b)

xICU‐adm‐per‐nurse‐02
l,w =

( 2∑
i=0

hICU
l,w+i

)/
nnurses
l,w (S16c)

xICU‐adm‐per‐nurse‐assist‐02
l,w =

( 2∑
i=0

hICU
l,w+i

)/
nnurse‐assist
l,w (S16d)

xICU‐adm‐per‐physiotherapist‐02
l,w =

( 2∑
i=0

hICU
l,w+i

)/
nphysiotherapists
l,w (S16e)

xICU‐adm‐per‐ventilator‐02
l,w =

( 2∑
i=0

hICU
l,w+i

)/
nventilators
l,w , (S16f)

and

xSARI‐adm‐per‐crit‐care‐bed‐02
l,w =

( 2∑
i=0

hSARI
l,w+i

)/
ncrit‐care‐beds
l,w (S17a)

xSARI‐adm‐per‐crit‐care‐bed‐vent‐02
l,w =

( 2∑
i=0

hSARI
l,w+i

)/
ncrit‐care‐beds‐vent
l,w (S17b)

xSARI‐adm‐per‐ventilator‐02
l,w =

( 2∑
i=0

hSARI
l,w+i

)/
nventilators
l,w (S17c)

xSARI‐adm‐per‐nurse‐02
l,w =

( 2∑
i=0

hSARI
l,w+i

)/
nnurses
l,w (S17d)

xSARI‐adm‐per‐physician‐02
l,w =

( 2∑
i=0

hSARI
l,w+i

)/
nphysicians
l,w , (S17e)
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where hSARI
l,w are the number of SARI hospital admissions among residents and non‐residents in location l andweek

w, nphysicians
l,w are the number of physicians, nnurses

l,w are the number of nurses, nnurse‐assist
l,w are the number of nurse

assistants, nphysiotherapists
l,w are the number of physiotherapists, nintensivist

l,w the number of intensive care specialists,
ncrit‐care‐beds
l,w the number of critical care beds, ncrit‐care‐beds‐vent

l,w the number of critical care beds controlled for ven‐
tilators and nventilators

l,w the number of ventilators in location l and week w. Figures S6 illustrate that most of these
simple healthcare demand indicators correlate strongly with in‐hospital fatality rates.

In our inference framework described in Section S7, we embed the indices (S16) within a variable selection frame‐
work to mitigate the fact that the indices that strongly correlated with each other. For this purpose, we standard‐
ised the indices for use in the Bayesian multi‐strain fatality as follows. First, we identify for each location the week
in which the smoothed, age‐standardised in‐hospital fatality rates (S13) prior to Gamma’s detection were lowest,

w̃l = argminw=1:(W detect−Γ
l −1zl,w, (S18)

whereW detect−Γ
l denotes the week index in which the Gamma variant was first detected in location l (Section S1).

Then, we standardise the pth indicator in (S16) according to

xindicator‐std
l,p,w =

(
xindicator
l,p,w − xindicator

l,p,w̃l

)/
sd
(
xindicator
l,p,w

)
, (S19)

where sd
(
xindicator
l,p,w

)
denotes the standard deviation of the pth indicator across all weeks in location l. Thus, the

standardised healthcare indicators evaluate to zero in week w̃l, and are constructed to describe increases in in‐
hospital fatality rates relative to theminimum age‐standardised in‐hospital fatality rate that was achieved at some
point prior to Gamma’s detection in each location.

S6 Controlling for pandemic associated mortality and vaccine roll‐out

Figure S25 illustrates that the share of age groups among hospital admissions changed substantially over time,
with the share of older age groups among hospital admissions declining steadily in recent months. To assess the
extent to which changes in the age composition of deaths after Gamma’s detection are driven by factors unrelated
to Gamma, we further quantified time trends in the population at risk of COVID‐19 hospitalisation, that were then
used as input into the Bayesianmulti‐strain fatalitymodel described in Section S7. First, to reflect high fatality rates
among older individuals and resulting changes to the population age composition, we subtracted accumulating
COVID‐19 attributable deaths from the 2020 population denominators. Second, to reflect increased protection to
COVID‐19 hospitalisation after vaccination, we accounted for increasing proportions of the population that had
received their first and second vaccine doses.

S6.1 Controlling for pandemic associated mortality

Weadjusted the population at risk for cumulative COVID‐19 attributablemortality in each location in several steps.
First, we considered all COVID‐19 attributable deaths in hospitals, which we obtained from the under‐reporting
adjusted death counts among hospitalised patients that are resident in each location, and which were reported
to SIVEP‐Gripe (Section S1.7). Second, we considered all COVID‐19 attributable out‐of‐hospital deaths among
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Figure S25: Temporal shifts in the age composition of COVID‐19 attributable hospital admissions in Rio de Janeiro.
The empirical, weekly proportions are shown as dots in colour. Posterior median estimates of the expected age
composition of hospital admissions, as computed in Equation S37, are shown as a black line along with 95% cred‐
ible intervals.

residents in each location, which were reported to SIVEP‐Gripe. Third, we used records from Brazil’s Civil Registry
to calculate weekly excess deaths among residents of each location. Then, we compared the excess deaths to
the in‐hospital and out‐of‐hospital COVID‐19 attributable deaths reported to SIVEP‐Gripe, and used whichever
number was larger in each week.

Startingwith the in‐hospital COVID‐19 attributable deaths, we knowall observeddeaths in residents (Section S1.7),
and calculated the expected number of additional deaths among hospitalised residents with unknown outcomes
(Section S3). To attribute an expected death date to the expected number of additional deaths, we estimated
for each city characteristic time distributions from the time of hospital admission to COVID‐19 attributable death.
The times from hospital admissions to deaths varied by age and location. For this reason we estimated the time
distributions independently for each location‐age group. Overall, Gamma distributions fitted by maximum like‐
lihood with the fitdist function in the fitdistrplus package, version 1.0.14, provided the closest match to
the empirical data in terms of quantile‐quantile plots when compared to Lognormal, Weibull, and Pareto distri‐
butions. The resulting Gamma distributions gh2d(s; ηh2dl,a ) with maximum likelihood parameter estimates η̂h2dl,a for
each location and age band were then time‐discretized and re‐normalized using

gh2dl,a,s =

(∫ s+1

s

gh2d(u; η̂h2dl,a )du

)/(∫ 65+1

1

gh2d(u; η̂h2dl,a )du

)
(S20)

for s = 1, . . . , 65 days, where the integral in the denominator is the normalising constant. The resulting time‐
discretized Gamma distributions provided a good fit against the empirical data for some locations. The estimated
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distributions of the time from hospital admission to death sum to 1, which we used in turn to attribute each
projected death in location l, age band a and day t over future days t+ s according to δl,a,t h

res‐U
l,a,t g

h2d
l,a,s, where s

was in s = 1, . . . , 65 days. The projected COVID‐19 attributable deaths among hospitalised residents in location
l and age band a in week w with as of yet unknown outcomes were calculated through

dres‐hosp‐unknown‐outcome
l,a,w =

∑
t∈w

65∑
s=0

zknown‐rollingl,a,t−s hres‐U
l,a,t−s g

h2d
l,a,s, (S21)

and added to the observed in‐hospital and out‐of‐hospital COVID‐19 attributable deaths that are reported to
SIVEP‐Gripe, and which are described in Section S1.7,

dres‐SIVEP‐adjl,a,w = dres‐SIVEPl,a,w + dres‐hosp‐unknown‐outcome
l,a,w . (S22)

So, while the deaths in (S11) are counted byweek of hospital admission, the deaths in (S22) are counted byweek of
death. Figure S3 illustrates the expected deaths in hospitalised residents with unknown outcomes, Equation (S21),
for each of the 14 cities in blue grey.

We further checked for additional under‐reporting by comparing (S22) against the excess deaths in residents
in each location, which we derived from longitudinal death records reported by Brazil’s Civil Registry (see Sec‐
tion S1.9). The death records in the Brazilian Civil Registry include both residents and non‐residents, and so could
not be directly compared to the underreporting‐adjusted, COVID‐19 attributable deaths among residents that are
derived from the SIVEP‐Gripe data, equation (S22). We calculated the proportion ρres‐COVID‐deathsl,a,w of the number of
COVID‐19 attributable deaths in location l and age band a in week w that occurred among residents,

ρres‐COVID‐deathsl,a,w = dresl,a,w/dl,a,w, (S23)

where the COVID‐19 attributable deaths among residents and non‐residents, dl,a,w, and among residents, dresl,a,w,
are described in Section S1.7. The proportion was set to zero whenever dl,a,w was zero. We then compared the
excess deaths and COVID‐19 related deaths from Brazil’s Civil Registry to the underreporting‐adjusted, COVID‐19
attributable deaths derived from SIVEP‐Gripe in location l, age band a and week w through

dres‐under‐reportedl,a,w = max
(
ρres‐COVID‐deathsl,a,w vexcessl,a,w , ρres‐COVID‐deathsl,a,w vcovidl,a,w, d

res‐SIVEP‐adj
l,a,w

)
− dres‐SIVEP‐adjl,a,w ,

(S24)

where dres‐cens‐adjl,a,w are defined in (S22). Finally, we calculated the underreporting‐adjusted COVID‐19 attributable
deaths among residents in location l, age band a and week w based on Civil Registry data through

dres‐SIVEP‐Registry‐adjl,a,w = dres‐SIVEP‐adjl,a,w + dres‐under‐reportedl,a,w . (S25)

Figure S3 illustrates the expected number of COVID‐19 attributable deaths that are derived by comparison to the
Civil Registry records, equation (S24), in red.

To check the final estimate of COVID‐19 attributable deaths in residents, Equation (S25), we sought to compare
the all‐cause deaths in the Brazilian civil registry data to other independent data sets reporting on the number
of deaths in 2020 and 2021 in Brazilian state capitals. For Manaus, we were able to retrieve the daily number of
public and private burials from theMayor’s office of Manaus. The daily data was published on the official website
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Figure S26: Reported all‐cause deaths inManaus. To check our adjustments to the reported COVID‐19 attributable
deaths in SIVEP‐Gripe for likely under‐reporting, we compared records of private and public burials to deaths
reported in the Brazilian Civil Registry. Shown is the 7‐day running average of all‐cause deaths reported in the
Brazilian Civil Registry, and the 7‐day running average of burial records.

of Manaus’ Mayor office [36] from April 1, 2020 to June 30, 2020, while it was published on the Amazonas State
Health Surveillance Foundation website [37] starting from October 27, 2020. To fill the hiatus, we used data from
the annual report on daily cemetery burials by the Mayor’s office [38]. Figure S26 shows the 7‐day running mean
of the daily burials against the 7‐day running mean of all‐cause deaths reported in the Brazilian Civil Registry for
Manaus. The burials lagged the registered deaths as can be expected by a few days, but otherwise were very
similar in magnitude, indicating that at least for Manaus, our approach to accounting for likely underreporting of
COVID‐19 attributable deaths in the SIVEP‐Gripe data is consistent with public and private burial records.

Finally, we downwards adjusted the 2020 population size projections nl,a (Section S1.3) by the expected, cu‐
mulated COVID‐19 attributable deaths after adjusting for unknown outcomes in hospitalised residents and for
differences to the Civil Registry data,

nA
l,a,w = nl,a −

w∑
s=1

dres‐SIVEP‐Registry‐adjl,a,s , (S26)

where dres‐SIVEP‐Registry‐adjl,a,w are defined in Equation (S25). Figure S27 illustrates the corresponding cumulated mortal‐

ity rates,
(∑w

s=1 d
res‐SIVEP‐Registry‐adj
l,a,s

)/
nl,a, for each location and age group. As of 26 July 2021, we find cumulated

mortality rates that exceed those in many other countries such as the US or the UK. Yet, the cumulated loss of life
alone is too small to account for the much larger observed shifts in the age composition of deaths since Gamma’s
detection.
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Figure S27: Cumulated COVID‐19 attributable mortality in per cent of age‐specific populations. For each location,
the expected COVID‐19 attributable deaths after adjusting for unknown outcomes in hospitalised residents and
for differences to the Civil Registry data were cumulated over time and divided by 2020 population size estimates
for each age band. The date of Gamma’s detection is shown as grey vertical line.
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Vaccine Dose

Estimated vaccine
efficacy against
symptomatic infection
14 days since administration

Notes and reference

Sinovac 1 10.5% (‐4.4‐23.3%)
Performed between 17/01/21 to 29/04/21
In Brazil with presence of the Gamma variant.
Subjects were 70 years old or older. Ref [39].

Sinovac 1 49.6% (11.3‐71.4%)
Performed between 19/01/21 to 25/03/21
In Brazil with presence of the Gamma variant.
Subjects were healthcare workers. Ref. [40].

Sinovac 2 41.6% (26.9‐53.3%)
Performed between 17/01/21 to 29/04/21
In Brazil with presence of the Gamma variant.
Subjects were 70 years old or older. Ref. [39].

Sinovac 2 36.8% (‐54.2‐74.2%)
Performed between 19/01/21 to 25/03/21
In Brazil with presence of the Gamma variant.
Subjects were healthcare workers. Ref. [40].

Sinovac 2 50.7% (33.3‐62.5%)
Performed between 23/02/2020 to 28/03/21
In Brazil with presence of the Gamma variant.
Subjects were healthcare workers. Ref. [41].

Covishield 1 76.0% (59‐85.9%)

Performed between 23/02/2020 to 28/03/21
In UK, South Africa and Brazil,
But results do not concern Gamma variant
Subjects were 18 year old or older. Ref. [42].

Covishield 1, 2 21.9% (‐49.9‐59.8%)
Performed between 24/06/20 to 09/11/20
In South Africa with presence of the Gamma variant.
Subjects were 18 to 65 years old. Ref. [43].

Covishield 2 63.6% (‐2.1‐87%)
Performed between 06/21 to 02/21
In Brazil with presence of the Gamma variant.
Subjects were 18 years old or older. Ref. [44].

Covishield 2 56.9% (‐15.5‐83.9%)
Performed between 06/21 to 02/21
In Brazil with presence of the Gamma variant.
Subjects were 18 years old or older. Ref. [44].

Covishield 2 10.4% (‐76.8‐54.8%)
Performed between 24/06/20 to 09/11/20
In South Africa with presence of the Gamma variant.
Subjects were 18 to 65 years old. Ref [43].

Covishield 2 66.7% (57.4‐74%)

Performed between 23/02/2020 to 28/03/21
In UK, South Africa and Brazil,
Results do not concern Gamma variant exclusively
Subjects were 18 year old or older. Ref. [42].

Table S6: COVID‐19 vaccine efficacy estimates in populations in which SARS‐CoV‐2 Gamma is circulating.

S6.2 Controlling for vaccine roll‐out
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To estimate vaccine coverage in residents of each population, we calculated the proportion of vaccinated individu‐
als in the estimated, mortality‐adjusted populations in each location. Specifically, we calculated vaccine coverage
with i doses of vaccine k in age group a in location l by week w through

pvaccinated‐k,il,a,w = vk,il,a,w/n
A
l,a,w. (S27)

Supplementary Figure S7 shows that vaccine coverage increased rapidly over time and highlights qualitative dif‐
ferences in vaccination roll‐out across cities. First, different vaccines were administered across cities. Second,
within cities, different vaccines were administered to different age groups. Third, within age bands, the average
time to the second dose varied substantially across locations.

We next sought to adjust the population at risk of severe illness and hospitalisation, which is to be used in the
Bayesian fatalitymodel, for the protective effect of Brazil’s vaccine roll‐out. Specifically, we subtracted fromnA

l,a,w,
Equation (S26), a proportion of the corresponding populations that were vaccinated 2 weeks earlier with one or
two doses,

nR
l,a,w = nA

l,a,w −
∑

k∈{Covishield,Sinovac,Pfizer,Janssen}

2∑
i=1

ηk,ivk,il,a,w−2, (S28)

where nA
l,a,w are defined in (S26), and ηk,ivk,il,a,w−2 describe the proportion of the population in location l and

age band a that was vaccinated with i doses of vaccine k two weeks earlier, and is in the model protected from a
COVID‐19 hospitalisation in week w.

To specify ηk,i, we considered published and unpublished data on vaccine effectiveness that were reviewed in the
systematic analysis of Imai [45] , and data from a further 6 studies, that evaluated COVID‐19 vaccine effective‐
ness in populations in which the SARS‐CoV‐2 Gamma variant was circulating. Table S6 lists the vaccine efficacy
estimates found following 1 or 2 doses of Covishield and Sinovac. For Sinovac, we identified one study estimat‐
ing vaccine effectiveness against death in São Paulo between January and April 2021 [39]. We assumed similar
vaccine effectiveness against severe infection requiring hospitalisation, and set ηSinovac,i to their estimates, which
are 31.6% (95% CI: 7.1‐49.7%) 2 weeks post first dose, and 71.4% (95% CI: 53.7‐82.3%) 2 weeks post second dose.
For Covishield, we could not identify studies on vaccine effectiveness against severe infection requiring hospi‐
talisation or deaths under our search criteria. Instead we considered estimates of vaccine effectiveness against
symptomatic infection, and then calibrated these estimates to expected vaccine effectiveness against a severe
outcome using the relationship reported in Figure 3A of [46]. The resulting values of ηCovishield,i that we use in this
study are 0.4% 2 weeks post first dose, and 0.91% 2 weeks post second dose. Figure S28 illustrates the resulting
changes in the proportions of the populations in each location and age band that in our model are not at risk of
COVID‐19 hospitalisation, 1−nR

l,a,w/n
A
l,a,w. By the end of the study period only 15.07% of administered doses in

the 14 state capitals were Pfizer, and even less Janssen doses were administered. Due to the low frequency, we
did not identify studies estimating the vaccine effectiveness in Brazil, and so for both Janssen and Pfizer, we used
the same effectiveness values as for AstraZeneca.
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Figure S28: Estimated population at risk from severe COVID‐19 requiring hospitalisation, after accounting for
vaccine coverage. See Equation (S28) for details. Our calculations are based on individual‐level data on vaccine
administrations from the Brazilian Ministry of Health database, and published or calibrated estimates of vaccine
effectiveness.
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S7 Statistical model to evaluate fluctuating in‐hospital fatality rates

We developed a Bayesian multi‐strain fatality model to disentangle the effects of pre‐pandemic healthcare in‐
equities, pandemic healthcare pressures and Gamma’s disease severity on fluctuating COVID‐19 in‐hospital fatal‐
ity rates. This section provides technical details on the model, inference, and generated quantities. Throughout,
we denote by A the age stratification (S1), by Wl the last week index in the observation period of location l, by
W emerge‐Γ

l the week index of the posteriormedian of the earliest week in which Gammawas estimated to circulate
locally (Section S2), and byW detect‐Γ

l the week index in which the Gamma variant was first detected in location l

(Section S1).

In Section S7.1, we describe how the model decomposes weekly, COVID‐19 attributable hospital admissions by
variant, based on Gamma’s temporal expansion as measured by variant frequencies. The SARS‐CoV‐2 sequence
data and sequence analyses were described in Sections S1.2 and S2. The COVID‐19 attributable hospital admis‐
sions entering the model are restricted to residents in each location without evidence of vaccination prior to
hospital admission, as described in Section S1.6. The hospital admissions are decomposed assuming a charac‐
teristic age profile of severe illness requiring hospitalisation, both for the Gamma and non‐Gamma variants. We
place this assumption in order to infer from the data if there are significant differences in the age profile of hospi‐
talisations between variants. The primary source of information to decompose the weekly, COVID‐19 attributable
hospital admissions by variant are the genomic data on the SARS‐CoV‐2 Gamma variant frequencies over time in
each location. We therefore conducted several sensitivity analyses using alternative sequence data sets to the
describe local replacement dynamics, which had no discernible impact on our primary findings. See Sections S9.1
and S9.2.

Section S7.2 presents our approach formodelling associations between in‐hospital fatality rateswith non‐parametric
location effects, fixed effects associated with the healthcare pressure indices, and non‐parametric virus variant
effects associated with Gamma’s replacement dynamics. In the model, the location effects account for social, cul‐
tural, economic or healthcare related factors that differentiate one city from another, and we interpret the ratio
of fatality rates with and without Gamma’s non‐parametric effect as Gamma’s effect size on in‐hospital infection
severity. We note that our list of regression predictors is not exhaustive, and so the Gamma specific effect size
could be causally confounded, and merely reflects associations with fatality rates that are better explained with
changes in variant frequency than with the observed healthcare pressure indices.

In Section S7.3 we explain how the model uses the linked data of weekly, COVID‐19 attributable hospital admis‐
sions and the number of future deaths amongst these weekly hospitalisations to infer the extent to which location
effects, pandemic healthcare pressure, and Gamma as measured on the population level through its replacement
dynamics are associated with fluctuating in‐hospital fatality rates. The model uses as input the underreporting‐
adjusted and age‐specific deaths among weekly hospitalisations that are defined in (S11) in Section S3.

In Section S7.4, we then review the entire model. In Section S7.5, we present details on numerical inference of
our Bayesian multi‐strain model. In Section S7.6, we describe epidemiologically relevant quantities that we derive
from the fitted model.

DOI: https://doi.org/10.25561/91875 Page 32 of 58

https://doi.org/10.25561/91875


06 October 2021 Imperial College COVID‐19 Response Team

S7.1 Decomposition of COVID‐19 hospital admissions by SARS‐CoV‐2 variant

To decompose COVID‐19 attributable hospital admissions by variant, we model the proportion αl,w of all‐age
COVID‐19 attributable hospital admissions in location l and week w that are of variant Gamma through a logistic
function, and fit the parameters of the logistic function through the number of Gamma positive samples sΓl,w
out of sl,w sequenced or Gamma‐genotyped samples over time. The model component describing the temporal
expansion of Gamma in hospital admissions is

sΓl,w ∼ Beta‐Binomial
(
sl,w, αl,w/θ1, (1− αl,w)/θ1

)
(S29a)

αl,w =
1

1 + exp
(
− αgrowth

l (w − αmid
l )

) (S29b)

αgrowth
l ∼ N (0, 0.22) (S29c)

αmid
l ∼ N (αmid‐mean

l , 32) (S29d)

αl,1:(W emerge‐Γ
l −1) ∼ Normal‐ccdf(0, 0.00252) (S29e)

θ1 ∼ Exponential(20), (S29f)

where the Beta‐Binomial is specified in terms of the shape‐shape parameterisation with mean αl,w and variance
equal to the Binomial variance component sl,wαl,w(1 − αl,w) multiplied by

(
1 + (sl,w − 1) 1

θ−1
1 +1

)
to allow for

overdispersion. Time runs in units of weeks from the start of the first wave until the end of the observation period
in the given location. The prior mean for the midpoint of the logistic function, αmid‐mean

l , was set to the week
in which the ratio sΓl,w/sl,w was closest to 0.5 in location l. We force Gamma’s variant frequencies to close to
zero before the week of Gamma’s emergence in each location, which we estimate phylogenetically (Section S2).
Technically this is implemented through the informative prior (S29e), whereW emerge‐Γ

l denotes theweek including
the posterior median estimate of the date of Gamma’s emergence in each location, and Normal‐ccdf denotes
the survial function of the normal density that is parameterised by the mean and standard deviation. The prior
in (S29f) was chosen to favour the least complex model with no overdispersion.

Next, we couple (S29b) to decompose the COVID‐19 attributable hospital admissions hres
l,a,w among residents in

location l and age band a in weekw with no evidence of vaccination prior to hospitalisation. Here, the age bands
a are specified in (S1) in Section S1.3, and hres

l,a,w are described in Section S1.6. We hypothesized that the Gamma
and non‐Gamma variants hospital admissions have a characteristic age composition, so that the mix of both char‐
acteristic age compositions according to the prevalence of Gamma and non‐Gamma variants in the population
provides an adequate description of the observed data hres

l,a,w. Specifically, if we denote the observed sum of
hospital admissions across age groups by hres‐sum

l,w =
∑

a h
res
l,a,w, we assume that the expected values of hres

l,a,w can
be described by

E
(
hres
l,a,w

)
=

[
αl,wπ

Γ
a + (1− αl,w)π

non‐Γ
a

]
hres
l,w, ∀a ∈ A, (S30)

where αl,w is from (S29b), and the vectorsπππΓ =
(
πΓ
a

)
a∈A andπππnon‐Γ =

(
πΓ
a

)
a∈A describe respectively the char‐

acteristic age compositions of the Gamma and non‐Gamma variants in hospital admissions, subject to
∑

a π
Γ
a = 1

and
∑

a π
non‐Γ
a = 1. However the age populations at risk of a severe outcome change over time in each location,

DOI: https://doi.org/10.25561/91875 Page 33 of 58

https://doi.org/10.25561/91875


06 October 2021 Imperial College COVID‐19 Response Team

which we described in nR
l,a,w in (S28) in Section S6. This leads us to model

E
(
hres
l,a,w

)
= πl,a,wh

res
l,w, ∀a ∈ A (S31a)

πl,a,w = αl,wπ
Γ
l,a,w + (1− αl,w)π

non‐Γ
l,a,w (S31b)

πΓ
l,a,w =

λΓ
l,an

R
l,a,w∑

a λ
Γ
l,an

R
l,a,w

(S31c)

πnon‐Γ
l,a,w =

λnon‐Γ
l,a nR

l,a,w∑
a λ

non‐Γ
l,a nR

l,a,w

, (S31d)

where the per‐capita hospital admission rates λΓ
l,a, λ

non‐Γ
l,a are characteristic of the Gamma and non‐Gamma vari‐

ants, and constant over time. The rates λΓ
l,a, λ

non‐Γ
l,a may not be the same across locations, for example because of

location‐specific inequities in care, but we expect that the ratios λΓ
l,a/λ

non‐Γ
l,a should be constant for all age bands.

It is helpful to note that alternatively, we could also have modelled

E
(
hres
l,a,w

)
= α̃l,wλ

Γ
l,a,wn

R
l,a,w + (1− α̃l,w)λ

non‐Γ
l,a,wn

R
l,a,w,

which leads in analogy to (S31b) to the equation

πl,a,w = α̃Γ
l,w

λΓ
l,an

R
l,a,w

Cl,w
+ (1− α̃Γ

l,w)
λnon‐Γl,an

R
l,a,w

Cl,w

where the normalising constant isCl,w =
∑

a α̃
Γ
l,wλ

P1
l,an

R
l,a,w+(1−α̃non‐Γl,w)λ

non‐Γ
l,a nR

l,a,w. However in this param‐
eterisation, the mixing parameters α̃l,w do not directly correspond to the replacement dynamics αl,w in (S29b),
and for this reason we work with (S31). Finally, we allow for overdispersion in the observed admission counts and
complete this model component with the same mean structure as in (S31) through

hhhres
l,w ∼ Dirichlet‐Multinomial

(
hres‐sum
l,w , ϕl,wπππl,w

)
(S32a)

πl,a,w = αl,wπ
Γ
l,a,w + (1− αl,w)π

non‐Γ
l,a,w (S32b)

πΓ
l,a,w = softmax

(
logλΓ

l,a + lognR
l,a,w

)
(S32c)

πnon‐Γ
l,a,w = softmax

(
logλnon‐Γ

l,a + lognR
l,a,w

)
(S32d)

logλΓ
l,a ∼ N (0, 1) (S32e)

logλnon‐Γ
l,a ∼ N (0, 1) (S32f)

ϕl,w = (hres‐sum
l,w − 1)/(θ2 + 1) (S32g)

θ2 ∼ Exponential(20), (S32h)

where we denote the vector of age‐specific hospital admissions in location l and week w by hhhres
l,w =

(
hres
l,a,w

)
a∈A

and the vector of the age composition of hospital admissions in location l and week w by πππl,w =
(
πl,a,w

)
a∈A,

again such that
∑

a πl,a,w = 1. The Dirichlet‐Multinomial is in standard sample size‐scale parameterisation such
that the means are given by hres‐sum

l,w πl,a,w as in (S29b), and the scale parameter ϕl,w is conditional on the known
hres‐sum
l,w re‐parameterised into the overdispersion parameter θ2, with θ2 > 0. The softmax transformations (S32c‐

S32d) allow for convenient prior specifications of the log hospital admission rates on the real line, and run over
age bands a for fixed location l and fixed week w. The prior in (S32h) was chosen to favour the least complex
model with no overdispersion.
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S7.2 Decomposition of COVID‐19 attributable in‐hospital fatality rates

We model in‐hospital fatality rates among hospital admissions in week w, location l and age group a that are
respectively infected with non‐Gamma and Gamma variants with the decomposition

ζnon‐Γl,a,w = logit−1
(
ηnon‐Γl,a +Xl,wβl

)
(S33a)

ζΓl,a,w = logit−1
(
ηnon‐Γl,a + ηΓ‐random‐effect

l,a +Xl,wβl

)
, (S33b)

subject to the constraint βl,i ≥ 0 for all l and i = 1, . . . , p. In (S33), Xl,w denote a set of p healthcare pressure
indices in location l and weekw as described in Section S5, andXl,wβl describes time trends in in‐hospital fatality
rates based on the p healthcare pressure indices regardless of changes in virus variants.

S7.3 Estimating factors associated with fluctuating in‐hospital fatality rates

To estimate the components of the in‐hospital fatality rates that are attributable to each location, to the Gamma
variant, and to changes in health‐care demand and resource depletion, we note that in the model the proportion
of all hospital admissions in weekw that occurs in age group awith variant Gamma is αl,wπ

Γ
l,a,w, and similarly for

non‐Gamma variants, see (S32b). Thus, the proportion of all hospital admissions in age a and week w that in the
model is attributed to Gamma is

αl,wπ
Γ
l,a,w

αl,wπΓ
l,a,w + (1− αl,w)π

non‐Γ
l,a,w

.

Of this proportion of hospital admissions in age a in weekw, the proportion of individuals with a fatal outcome is
(S33a). Similarly, the proportion of all hospital admissions in age i and week w that is attributed to non‐Gamma
variants is

(
(1 − αl,w)π

non‐Γ
l,a,w

)/(
αl,wπ

Γ
l,a,w + (1 − αl,w)π

non‐Γ
l,a,w

)
, and in this proportion individuals face a fatal

outcome with probability (S33b). Thus, in age group a and week w the in‐hospital fatality rate across variants is
given by the weighted average

ζl,a,w =
(1− αl,w)π

non‐Γ
l,a,w

αl,wπΓ
l,a,w + (1− αl,w)π

non‐Γ
l,a,w

ζnon‐Γl,a,w+

αl,wπ
Γ
l,a,w

αl,wπΓ
l,a,w + (1− αl,w)π

non‐Γ
l,a,w

ζΓl,a,w.

(S34)

We fit (S34) to the linked data of hospital admissions among residents of age a in location l and week w and the
corresponding, censoring‐adjusted COVID‐19 attributable deaths among these hospital admissions. This leads us
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to the model component

hres‐cens‐adj‐D
l,a,w ∼ Beta‐Binomial

(
hres
l,a,w, ζl,a,w/θ3, (1− ζl,a,w)/θ3

)
(S35a)

ζl,a,w =
(1− αl,w)π

non‐Γ
l,a,w

αl,wπΓ
l,a,w + (1− αl,w)π

non‐Γ
l,a,w

ζnon‐Γl,a,w+ (S35b)

αl,wπ
Γ
l,a,w

αl,wπΓ
l,a,w + (1− αl,w)π

non‐Γ
l,a,w

ζΓl,a,w (S35c)

logit ζnon‐Γl,a,w = ηnon‐Γl,a +Xl,wβl (S35d)

logit ζΓl,a,w = ηnon‐Γl,a + ηΓ‐random‐effect
l,a +Xl,wβl (S35e)

ηnon‐Γl,a ∼ N (−0.25, 1.52) (S35f)

ηΓ‐random‐effect
l,a ∼ N (0, σ2

ζ ) (S35g)

βl,i ∼ N[0,∞](0, κ
2
l,iτ

2) (S35h)

κl,i ∼ Half‐Cauchy(0, 1) (S35i)

τ ∼ Half‐Cauchy(0, 0.01) (S35j)

σζ ∼ Exponential(2) (S35k)

θ3 ∼ Exponential(100), (S35l)

wherew = 1, . . . ,Wl, and the age bands a are specified in (S1) in Section S1.3. The Beta‐Binomial is in the shape‐
shape parameterisationwithmean ζl,a,w and variance equal to the Binomial variance component hres

l,a,wζl,a,w(1−
ζl,a,w)multiplied by

(
1+(hres

l,a,w−1) 1
θ−1
3 +1

)
to allow for overdispersion. The priors in (S35f) were chosen to place

the non‐Gamma in‐hospital fatality rate around the empirically observed range. In (S35g), we model the Gamma
in‐hospital fatality rate as a random effect around the non‐Gamma in‐hospital fatality rate. The priors in (S35h‐
S35j) were chosen to favour a priori no dependence of in‐hospital fatality rates on hospital load predictors, and
shrinkage towards zero using a horseshoe‐type shrinkage prior. The prior in (S35l) was chosen to favour the least
complex models with no overdispersion.

S7.4 Complete model

The complete multi‐strain epidemic model consists of the model component described in (S29) to fit against the
variant frequency data in location l and week w, the model component in (S32) to fit against the age‐specific
COVID‐19 attributable hospital admissions among residents in location l and age band a in weekw, and themodel
component in (S35) to fit against the linked, underreporting adjusted, COVID‐19 attributable deaths among hos‐
pital admissions in residents in location l, age band a and week w that had no evidence of vaccination prior to
hospital admission.

S7.5 Numerical inference

Throughout, the model described through equations (S29‐S35) was independently fitted to data from each lo‐
cation using cmdstanr version 0.3.0.9000 [47, 48]. Each inference was conducted in 4 Hamiltonian Monte Carlo
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Figure S29: Trace plot of the parameter with lowest bulk Effective Sample Size. The minimum value achieved was
210 for the model run for Macapá.

chains, each over 500 warmup iterations, and 2,000 sampling iterations. There were no divergent transitions and
the smallest bulk effective sample size was 210 . Figure S29 illustrates the Hamiltonian Monte Carlo chains for the
parameter with lowest bulk effective sample size.

S7.6 Generated quantities

From theMonte Carlo samples of the joint posterior distribution of the fitted Bayesian multi‐strain fatality model,
we generate the following quantities.

Hospital admissions. We calculate the expected, COVID‐19 attributable hospital admissions among residents in
location l, age band a, and week w for non‐Gamma and Gamma variants that had no evidence of vaccionat prior
to hospitalisation respectively by

hres‐non‐Γ
l,a,w = (1− αl,w)π

non‐Γ
l,a,whres

l,a,w

hres‐Γ
l,a,w = αl,wπ

Γ
l,a,wh

res
l,a,w,

(S36)

where hres
l,a,w are observed and αl,w, πnon‐Γ

l,a,w , πΓ
l,a,w are from the joint posterior. The expected, COVID‐19 at‐

tributable hospital admissions among residents in location l, age band a, and week w across all variants are

hres‐all
l,a,w = hres‐non‐Γ

l,a,w + hres‐Γ
l,a,w. (S37)

The expected share of age group a among hospital admissions among residents of location l in week w with non‐

Gamma variants are
hres‐non‐Γ
l,a,w∑

b hres‐non‐Γ
l,b,w

= πnon‐Γ
l,a,w , and similarly for Gamma. The expected share of age group a among

hospital admissions among residents of location l in week w across all variants is πl,a,w = (1 − αl,w)π
non‐Γ
l,a,w +
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αl,wπ
Γ
l,a,w. We calculate the expected ratio in the share of age group a among Gamma hospital admissions among

residents of location l versus non‐Gamma hospital admissions in the 2020 population by

πΓ
l,a,1

πnon‐Γ
l,a,1

=
λΓ
l,an

R
l,a,1∑

b λ
Γ
l,bn

R
l,b,1

/ λnon‐Γ
l,a nR

l,a,1∑
b λ

non‐Γ
l,b nR

l,b,1

=
λΓ
l,anl,a∑
b λ

Γ
l,bnl,b

/ λnon‐Γ
l,a nl,a∑
b λ

non‐Γ
l,b nl,b

, (S38)

where nl,a is the 2020 population size in location l in age band a (Section S1.3), and λnon‐Γ
l,b , λΓ

l,b are from the joint
posterior. Note that this ratio controls for changes in the populations susceptible to severe COVID‐19 over time.

Deaths followingCOVID‐19hospital admissions. Wecalculate the expected, COVID‐19 attributable deaths among
hospital admissions in residents in location l, age band a, and week w for non‐Gamma and Gamma variants re‐
spectively by

hres‐non‐Γ‐D
l,a,w = (1− αl,w)π

non‐Γ
l,a,whres

l,a,wζ
non‐Γ
l,a,w

hres‐Γ‐D
l,a,w = αl,wπ

Γ
l,a,wh

res
l,a,wζ

Γ
l,a,w,

(S39)

wherehres
l,a,w are observed andαl,w, πnon‐Γ

l,a,w , πΓ
l,a,w, ζ

non‐Γ
l,a,w , ζΓl,a,w are from the joint posterior. The expected, COVID‐

19 attributable deaths among hospital admissions in residents in location l, age band a, andweekw for all variants
are

hres‐all‐D
l,a,w = hres‐non‐Γ‐D

l,a,w + hres‐Γ‐D
l,a,w . (S40)

We calculate the expected share of age group a among deaths in hospital admissions among residents of location
l in week w with non‐Gamma and Gamma variants respectively by

hres‐non‐Γ‐D
l,a,w∑
b h

res‐nonΓ‐D
l,b,w

=
πnon‐Γ
l,a,w ζnon‐Γl,a,w∑
b π

non‐Γ
l,b,w ζnon‐Γl,b,w

hres‐Γ‐D
l,a,w∑

b h
res‐Γ|text−D
l,b,w

=
πΓ
l,a,wζ

Γ
l,a,w∑

b π
Γ
l,b,wζ

Γ
l,b,w

,

(S41)

where πnon‐Γ
l,a,w , πΓ

l,a,w, ζ
non‐Γ
l,a,w , ζΓl,a,w are from the joint posterior. Thus, the expected share of age group a among

deaths following hospital admissions in residents in location l in week w regardless of variant is

hres‐D
l,a,w∑
b h

res‐D
l,b,w

=
(1− αl,w)π

non‐Γ
l,a,w ζnon‐Γl,a,w + αl,wπ

Γ
l,a,wζ

Γ
l,a,w∑

b(1− αl,w)π
non‐Γ
l,b,w ζnon‐Γl,b,w + αl,wπΓ

l,b,wζ
Γ
l,b,w

. (S42)

We calculate the expected ratio in the share of age group a among Gamma deaths after hospital admission in
residents of location l versus non‐Gamma deaths in the 2020 population similar to (S38) by(

hres‐Γ‐D
l,a,1∑
b h

res‐Γ‐D
l,b,1

)/(
hres‐non‐Γ‐D
l,a,1∑
b h

res‐non‐Γ‐D
l,b,1

)
=(

λΓ
l,aζ

Γ
l,a,1nl,a∑

b λ
Γ
l,bζ

Γ
l,b,1nl,b

)/(
λnon‐Γ
l,a ζnon‐Γl,a,1 nl,a∑
b λ

non‐Γ
l,b ζnon‐Γl,b,1 nl,b

)
,

(S43)

where nl,a is the 2020 population size in location l in age band a (Section S1.3), and λnon‐Γ
l,b , λΓ

l,b, ζ
non‐Γ
l,a,w , ζΓl,a,w

are from the joint posterior. Note that this ratio controls for changes in the populations susceptible to severe
COVID‐19 over time, and for changes in hospital pressures over time.
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Contribution of location to COVID‐19 in‐hospital fatality rates. To compare COVID‐19 in‐hospital fatality rates
across locations, we define the overall in‐hospital fatality rate in location l and week w in an age‐standardised
population that adjust for differences in age composition across locations. Specifically, we calculate

ζage‐stdl,w =
∑
a

ncities
a∑

b n
cities
b

ζl,a,w (S44)

where ncities
a is the population size in age band a across all cities considered, and ζl,a,w is from the joint posterior.

Then, for each location, we define the week w⋆
l with lowest in‐hospital fatality rate as the week that minimises

the posterior median of (S44),

w⋆
l = argminw∈1:W detect‐Γ

l

(
posterior median of ζage‐stdl,w

)
, (S45)

and calculate the lowest, age standardised COVID‐19 in‐hospital fatality rates prior to Gamma’s first detection
through

ζ lowestl = ζage‐stdl,w⋆
l

. (S46)

It is helpful to note that the healthcare pressure indices are standardised and evaluate to zero in each location’s
referenceweek, i. e. theweek prior to Gamma’s first detectionwith lowest empirical, age‐standardised in‐hospital
fatality rate as described in Section S5. The weekw⋆

l typically corresponds to the week with lowest empirical, age‐
standardised in‐hospital fatality rate, and so ζ lowestl is evaluatedwhen the healthcare pressure effectXl,wβl is zero.
The estimated Gamma frequencies αl,w are of course also very small prior to Gamma’s first detection, and so the
lowest, age standardised COVID‐19 in‐hospital fatality rates can be more simply expressed with

ζ lowestl ≈
∑
a

ncities
a∑

b n
cities
b

logit−1
(
ηnon‐Γl,a

)
, (S47)

where ηnon‐Γl,a are the intercept terms in our regression (S33) and from the joint posterior. Then, to compare (S46)
across locations, we find the location with overall lowest age‐standardised in‐hospital fatality rate by

l⋆ = argminl ζ
lowest
l , (S48)

and compute for all other locations l the ratio

ζ lowest‐ratiol = ζ lowestl /ζ lowestl⋆ . (S49)

We interpret (S49) as the location effect on COVID‐19 in‐hospital fatality rates. Because of (S47), the location effect
does not include contributions attributable to the healthcare pressure indices (Xl,wβl), nor any contributions
attributable to the non‐parametric Gamma effects (ηΓl,a) on in‐hospital fatality rates.

Contributionof healthcare pressure to COVID‐19 in‐hospital fatality rates. To comparetime trends to in‐hospital
fatality rates in each location, we calculate for each location the multiplicative effect of changes in healthcare de‐
mand and resources in week w in location l by

ζmultiplier
l,w =

∑
a

ncities
a∑

b n
cities
b

(
ζnon‐Γl,a,w /ζnon‐Γl,a,w⋆

l

)
, (S50)
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where ζnon‐Γl,a,w are from the joint posterior. It is helpful to recall Equation (S33a), which shows that we have more
simply

ζmultiplier
l,w ≈

∑
a

ncities
a∑

b n
cities
b

logit−1
(
ηnon‐Γl,a +Xl,wβl

)
logit−1

(
ηnon‐Γl,a

) . (S51)

Here, the approximation is because the Gamma frequencies αl,w are very small but not exactly zero, and because
theweek inwhich the loess‐smoothed fatality rates are lowestmay not exactly coincidewith theweekw⋆

l in which
the model‐based fatality rates are lowest. We interpret (S50) as the healthcare pressure effect on COVID‐19 in‐
hospital fatality rates. Because of (S51), the healthcare pressure effect does not include contributions attributable
to the non‐parametric Gamma effects (ηΓl,a) on in‐hospital fatality rates, and corresponds to the multiplier to the
minimum fatality rates in each location that is associated with the healthcare pressure indices (Xl,wβl).

Contribution of Gamma to COVID‐19 in‐hospital fatality rates. Finally we identify the effect of Gamma on in‐
hospital fatality rates as measured through population‐level increases in Gamma’s variant frequency in each lo‐
cation. Standardising across age bands, we calculate the ratio in Gamma versus non‐Gamma in‐hospital fatality
rates in location l by

ζΓ−ratio
l =

∑
a

ncities
a∑

b n
cities
b

ζΓl,a,w⋆
l
/ζnon‐Γl,a,w⋆

l
, (S52)

where ζΓl,a,w⋆
l
, ζnon‐Γl,a,w⋆

l
are from the joint posterior. We interpret (S52) as the Gamma effect on in‐hospital fatality

rates. It is again helpful to recall Equation (S33), which shows that we can approximate the Gamma effect through

ζΓ−ratio
l ≈

∑
a

ncities
a∑

b n
cities
b

logit−1
(
ηnon‐Γl,a + ηΓl,a

)
logit−1

(
ηnon‐Γl,a

) . (S53)

This shows that ζΓ−ratio
l does not include contributions attributable to the healthcare pressure indices (Xl,wβl),

and corresponds to the multiplier to the minimum fatality rates in each location that is associated with the non‐
parametric Gamma effects (ηnon‐Γl,a ).

S8 Counterfactual analyses

To quantify the impact that the observed fluctuations in COVID‐19 attributable in‐hospital rates had on the death
toll in the 14 state capitals, we performed two counterfactual analyses. The aim of the two counterfactuals was to
estimate howmany COVID‐19 attributable deaths could have been avoidedwith sufficient healthcare resources so
that healthcare pressures would not result in shocks in in‐hospital fatality rates (Scenario 1), or so that healthcare
pressures would not result in shocks in in‐hospital fatality rates and in addition there would have been the same
low baseline demand fatality rate across locations (Scenario 2). The first counterfactual is thus based on the
minimum in‐hospital fatality rates that were observed in each location, and which are thus achievable in each
location. The second counterfactual in addition assumes that the lowest observed in‐hospital fatality rate, which
we observed in Belo Horizonte, could be achieved in all other locations. This section provides technical details on
the implementation of these counterfactuals.
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S8.1 Counterfactual 1

For each location l, we consider the estimated age‐standardised in‐hospital fatality rate (Equation (S44)) in the ref‐
erenceweek, i. e. the weekwith the lowest age‐standardised in‐hospital fatality rate prior to Gamma’s emergence
in each location. In this counterfactual, we then compute the cumulated COVID‐19 attributable deaths following
hospital admissions among residents in location l that had no evidence of vaccination prior to hospital admission,
for each age band a and across age bands as

hhyp1‐res‐D
l,a =

Wl∑
w=1

hres
l,a,wζl,a,w⋆

l

hhyp1‐res‐D
l =

∑
a∈A

hhyp1‐res‐D
l,a ,

(S54)

where the week indices range over the entire observation period up to the final week Wl in each location. We
define the expected COVID‐19 attributable deaths that could have been avoided in the absence of healthcare
pressures in location l during the observation period relative to this hypothetical scenario by

hhyp1‐avoidable‐D
l =

( Wl∑
w=1

∑
a∈A

hres‐adj‐D
l,a,w

)
− hhyp1‐res‐D

l , (S55)

where the observed hres‐adj‐D
l,a,w are described in Section S3. Similarly, we define the expected percentage reduction

in COVID‐19 attributable deaths relative to this hypothetical scenario by

1− phyp1‐avoidable‐Dl =
hhyp1‐avoidable‐D
l∑Wl

w=1

∑
a∈A hres‐adj‐D

l,a,w

. (S56)

S8.2 Counterfactual 2

In the second counterfactual analysis, we considered the location l⋆⋆ inwhichwe found the lowest age‐standardised
in‐hospital fatality rate prior to Gamma’s detection in each location,

l⋆⋆ = argminl
(

min
w∈1:W detect‐Γ

l

(
posterior median of ξage‐stdl,w

))
. (S57)

In this counterfactual, we then compute the total, cumulated COVID‐19 attributable deaths following hospital
admissions among residents in location l that had no evidence of vaccination prior to hospital admission, for each
age band a and across age bands as

hhyp2‐res‐D
l,a =

Wl∑
w=1

hres
l,a,wζl⋆⋆,a,w⋆

hhyp2‐res‐D
l =

∑
a∈A

hhyp2‐res‐D
l,a ,

(S58)
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where again the week indices range over the entire observation period up to the final weekWl in each location.
In analogy to the first counterfactual, we then calculate

hhyp2‐avoidable‐D
l =

( Wl∑
w=1

∑
a∈A

hres‐adj‐D
l,a,w

)
− hhyp2‐res‐D

l , (S59a)

phyp2‐avoidable‐Dl = 1−
hhyp2‐res‐D
l∑Wl

w=1

∑
a∈A hres‐adj‐D

l,a,w

. (S59b)

S9 Sensitivity analyses

S9.1 Using SARS‐CoV‐2 genomic sequence data obtained under controlled sampling

This section describes key study outcomes when in place of the SARS‐CoV‐2 sequence data from GISAID we in‐
stead used SARS‐CoV‐2 sequence data that was obtained under more controlled sequence sampling frames. We
performed this sensitivity analysis because SARS‐CoV‐2 sequences are often obtained from patients with unusual
clinical progression [49], and therefore may not be representative of Gamma’s temporal expansion at population
level.

Data were available from three locations, Manaus, Belo Horizonte, and São Paulo, and are shown in Supplemen‐
tary Table S7. In Manaus, samples from PCR‐positive residents testing in two private laboratories through nasal
and oropharyngeal swabs were selected at random regardless of Ct values for sequencing. The samples were se‐
quenced and processed using the ARTIC bioinformatics pipeline [50] as described in [51]. Viral genomes recovered
from 147 samples collected between November 1, 2020 and January 10, 2021 had sufficient genome coverage
enabling lineage classification with pangolin version 2.2.1 [52, 53]. In Belo Horizonte, samples were selected at
random from PCR‐positive residents in three laboratories (Laboratório Hermes Pardini, Laboratório de Biologia
Integrativa, UFMG, and Laboratório Municipal de Referência, PBH). The samples were sequenced on the Illumina
MiSeq platform and processed using a custompipeline. Idenfitiedmutationsweremanually inspected, and the se‐
quences were classified using Pangolin version 2.2.1 [52]. In total, 27 samples were classified as P.1/Gamma, and
47 samples to other lineages. For São Paulo, sequences were generated by the Adolf Lutz Institute (IAL), a national
public health and reference laboratory for São Paulo State, Brazil, retrieved from GISAID (https://www.gisaid.org)
for the period November 1, 2020, to March 31, 2021. In total, 76 sequences were analysed between November
1, 2020, and March 31, 2021.
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Manaus Belo Horizonte São Paulo

Week Genomes Gamma Genomes Gamma Genomes Gamma
sampled positive sampled positive sampled positive

27/05/20 2 0 ‐ ‐ ‐ ‐
02/11/20 9 0 ‐ ‐ 1 0
09/11/20 2 0 ‐ ‐ ‐ ‐
16/11/20 4 0 ‐ ‐ ‐ ‐
23/11/20 ‐ ‐ ‐ ‐ 1 0
30/11/20 2 1 ‐ ‐ ‐ ‐
07/12/20 7 1 ‐ ‐ ‐ ‐
14/12/20 24 7 ‐ ‐ ‐ ‐
21/12/20 37 20 ‐ ‐ 4 0
28/12/20 14 8 ‐ ‐ 2 0
04/01/21 46 40 2 0 3 1
11/01/21 ‐ ‐ 1 0 7 5
18/01/21 ‐ ‐ ‐ ‐ 7 2
25/01/21 ‐ ‐ 2 0 3 1
01/02/21 ‐ ‐ 3 0 1 0
08/02/21 ‐ ‐ 1 0 2 1
15/02/21 ‐ ‐ 3 0 14 10
22/02/21 ‐ ‐ 1 0 10 9
01/03/21 ‐ ‐ 37 11 5 5
08/03/21 ‐ ‐ 24 16 6 6
15/03/21 ‐ ‐ ‐ ‐ 2 2
22/03/21 ‐ ‐ ‐ ‐ 7 6
29/03/21 ‐ ‐ ‐ ‐ 1 1

Table S7: SARS‐CoV‐2 sequence data from Manaus, Belo Horizonte, and São Paulo, obtained under controlled
sequence sampling frames.
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Belo Horizonte Manaus Sao Paulo
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Figure S30: Estimated dynamics of Gamma’s temporal expansion in Belo Horizonte, Manaus, and São Paulo, when
using sequence data collected using controlled sampling methodologies. Posterior median estimates of Gamma’s
variant frequency (dots) are shown along with 95% credible intervals (linerange) for the central analysis (yellow)
and sensitivity analysis (purple).
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Supplementary Figure S30 compares Gamma’s estimated replacement dynamics under the Bayesian multi‐strain
fatality model when using sequence data obtained under a random or controlled sampling frame compared to
when using the GISAID data. The figure illustrates that Gamma’s estimated replacement dynamics in the three
cities are insensitive to the differences in the two sequence data sets, and indeed all other aspects of model fit
showed similar levels of congruence (not shown). Supplementary Figure S31 compares the key study outcomes,
the estimated location, Gamma, and healthcare pressure effect sizes, when using the sequence data obtained
under a random or controlled sampling frame compared to when using the GISAID data. All estimated effect
sizes were highly concordant, highlighting the robustness of the inferred conclusions using GISAID data, which are
available for a wider range of locations.

S9.2 Using genomic sequence data obtained from Rede Genomica Fiocruz

This section describes key study outcomes when in place of the SARS‐CoV‐2 sequence data from GISAID we in‐
stead used sequence data publicly available via Rede Genomica Fiocruz. This sensitivity analysis was carried out
across all 14 cities, and a detailed description of the data and its associated sampling methodologies is available
at http://www.genomahcov.fiocruz.br. We selected only genome sequences obtained between November 2020
and May 2021, in‐keeping with our approach to collating GISAID sequence data. This information was collected
from data updated on June 15, 2021. We again assumed that the variant frequencies reported at state level are
representative of the variant frequencies in state capitals. The raw counts for sampled genomes over time are
presented in Supplementary Figure S32.
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Figure S31: Estimated location, Gamma, and healthcare pressure effects when using sequence data collected
using controlled sampling methodologies. (A) Estimated location effect, defined as in the main text and shown
in Figure 5B. Posterior median estimates (dots) are shown along with 95% credible intervals (linerange) for the
central analysis (yellow) and sensitivity analysis (purple). (B) Estimated Gamma effect, defined as in the main text
and shown in Figure 5C. (C) Estimated healthcare pressure effect, defined as in the main text and shown in Figure
5D.

DOI: https://doi.org/10.25561/91875 Page 46 of 58

https://doi.org/10.25561/91875


06 October 2021 Imperial College COVID‐19 Response Team

Rio de Janeiro Salvador São Luís São Paulo

Macapá Manaus Natal Porto Alegre Porto Velho

Belo Horizonte Curitiba Florianópolis Goiânia João Pessoa

20
20

−1
1−

01

20
20

−1
2−

01

20
21

−0
1−

01

20
21

−0
2−

01

20
21

−0
3−

01

20
21

−0
4−

01

20
21

−0
5−

01

20
21

−0
6−

01

20
20

−1
1−

01

20
20

−1
2−

01

20
21

−0
1−

01

20
21

−0
2−

01

20
21

−0
3−

01

20
21

−0
4−

01

20
21

−0
5−

01

20
21

−0
6−

01

20
20

−1
1−

01

20
20

−1
2−

01

20
21

−0
1−

01

20
21

−0
2−

01

20
21

−0
3−

01

20
21

−0
4−

01

20
21

−0
5−

01

20
21

−0
6−

01

20
20

−1
1−

01

20
20

−1
2−

01

20
21

−0
1−

01

20
21

−0
2−

01

20
21

−0
3−

01

20
21

−0
4−

01

20
21

−0
5−

01

20
21

−0
6−

01

20
20

−1
1−

01

20
20

−1
2−

01

20
21

−0
1−

01

20
21

−0
2−

01

20
21

−0
3−

01

20
21

−0
4−

01

20
21

−0
5−

01

20
21

−0
6−

01

0.0

2.5

5.0

7.5

10.0

0

1

2

3

4

5

0

10

20

30

40

0

10

20

30

0

100

200

300

400

500

0

4

8

12

16

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

12.5

0

4

8

12

16

0

10

20

30

40

50

0

5

10

15

20

25

0

5

10

0

2

4

6

0

50

100

150

200

N
um

be
r 

of
 w

ee
kl

y 
S

A
R

S
−

C
oV

−
2 

se
qu

en
ce

s

Lineage Assignment non−Gamma Gamma

Figure S32: SARS‐CoV‐2 sequence data obtained from Rede Genomica Fiocruz in the 14 states in which the 14
state capitals are located. Data are shown by state capital, assuming that the variant frequencies reported at state
level are representative of the variant frequencies in state capitals.
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Figure S33: Estimated temporal dynamics of Gamma frequency across the 14 cities when using sequence data
from Rede Genomica Fiocruz. Posterior median estimates (dots) are shown along with 95% credible intervals
(linerange) for the central analysis (yellow) and sensitivity analysis (purple).
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Figure S34: Estimated effect of location on in‐hospital fatality rates when using sequence data from Rede Genom‐
ica Fiocruz. Posterior median estimates (dots) are shown along with 95% credible intervals (linerange) for the
central analysis (yellow) and sensitivity analysis (purple).
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Figure S35: Estimated effect of Gamma infection on in‐hospital fatality rates when using sequence data from Rede
Genomica Fiocruz. Posterior median estimates (dots) are shown along with 95% credible intervals (linerange) for
the central analysis (yellow) and sensitivity analysis (purple).
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Figure S36: Estimated effect of healthcare pressure on in‐hospital fatality rates when using sequence data from
RedeGenomica Fiocruz. Posteriormedian estimates (dots) are shownalongwith 95% credible intervals (linerange)
for the central analysis (yellow) and sensitivity analysis (purple).

Supplementary Figure S33 compares the modelled replacement dynamics of Gamma (as inferred by the Bayesian
multi‐strain fatality model) when using genomic data either from GISAID or from Rede Genomica Fiocruz. The in‐
ferred temporal dynamics of Gamma frequency across all 14 locations show only minor differences depending on
the dataset utilised. This close concordance was also observed for the model‐estimated effects of location (Sup‐
plementary Figure S34), infection with the Gamma variant (Supplementary Figure S35), and healthcare pressure
(Supplementary Figure S36) on in‐hospital fatality rates.

S9.3 Patients and resources in private hospitals

This section describes fluctuations in COVID‐19 in‐hospital fatality rates when the data were restricted to patients
and resources in private hospitals. We performed this sensitivity analysis to investigate the extent to which fluc‐
tuations in COVID‐19 in‐hospital fatality rates were also observed in private hospital settings.

For São Paulo, we were able to classify hospitals based on their unique hospital identifier number reported in
the SIVEP‐Gripe [1] almost completely into “public” or “private” hospitals, or, where an assignment could not be
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Figure S37: Non‐parametric estimates of COVID‐19 in‐hospital fatality rates in public and private hospitals by age
group in São Paulo. Nearly all of São Paulo’s hospitals could be categorised into public or private healthcare fa‐
cilities, and COVID‐19 in‐hospital fatality rates were calculated among unvaccinated patients in public hospitals
(blue), and private hospitals (red). Non‐parametric, smoothed loess estimates (line) are shown with 95% confi‐
dence intervals (ribbon). Weekly data are shown as dots, and the date of Gamma’s first detection is indicated as
a vertical dotted black line.

made based on available information, into “public or private” hospitals. The data are shown in Supplementary
Figure S3.

We then calculated the non‐parametric estimates of COVID‐19 in‐hospital fatality rates in each age group as de‐
scribed in Section S4 among unvaccinated, resident patients that were hospitalised in either private or public
healthcare facilities in São Paulo. Figure S37 compares the COVID‐19 in‐hospital fatality rates in public versus pri‐
vate healthcare facilities in São Paulo for each age group. Overall, we find that COVID‐19 in‐hospital fatality rates
were over time consistently and significantly lower in São Paulo’s private healthcare facilities compared to São
Paulo’s public healthcare facilities. However, importantly, we found similar, synchronised fluctuations in private
and public healthcare facilities over time. This suggests that the large impact of pandemic resource limitations on
fatality rates that we characterise are common.
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S9.4 Excluding patients without data on vaccination status

In Belo Horizonte, the age‐standardised COVID‐19 in‐hospital fatality rates declined over the summer months of
2021 to levels well below those seen during earlier time periods (Figure 5A in the main text). We hypothesised
that larger numbers of patients hospitalised in Belo Horizonte may have been vaccinated, with no vaccination
record reported to SIVEP‐Gripe. To address this possibility, we performed a sub‐analysis in which we excluded
patients with unknown vaccination status in the SIVEP‐Gripe data set, and the results of this sensitivity analysis
are reported in this Section.

From the denominator of COVID‐19 attributable hospitalised residents hres
l,a,w described in Section S1.6, we further

excluded patients with unknown vaccination status on or afterMarch 29, 2021. We restricted exclusion of patients
with unknown vaccination status to the time period on or after March 29, 2021 because all records prior to 2021
have unknown vaccination status (see Figure S38), and we were unable to generate robust smoothed trends with
data in January and March excluded. We then re‐calculated the non‐parametric and age‐standardised estimates
of COVID‐19 in‐hospital fatality rates (Section S4). Figure S38 compares the in‐hospital fatality rates in reported un‐
vaccinated patients or patients with unknown vaccination status (blue) to those in reported unvaccinated patients
only (red). For most state capitals, hospitalised patient denominators were too small to obtain reliable estimates
of in‐hospital fatality rates. In the remaining locations, our analysis suggests the estimated COVID‐19 in‐hospital
fatality rates are not significantly different when patients with unknown vaccination status are excluded, and
thus we expect that missing data on vaccination status has likely no substantial impact on our primary findings.
However we note that Belo Horizonte remained an exception, with larger discrepancies obsserved, and so the
COVID‐19 in‐hospital fatality rates reported in the main text could be confounded with unreported vaccination
status.

S9.5 Alternative assumptions on COVID‐19 attributable patients with unknown clinical out‐
come

The highest age‐standardised COVID‐19 in‐hospital fatality rates were observed in Rio de Janeiro, against the na‐
tional trend of declining rates in Brazil’s South and Southeast macroregions. This prompted us to compare excess
deaths derived from Brazilian’s Civil Registry to the COVID‐ 19 attributable in hospital deaths (Section S1.9), which
suggested that a smaller proportion of hospitalised patients with unknown clinical outcomesmay have died, com‐
pared to what we expect based on our under‐reporting adjustments (Section S3). In a sensitivity analyses, we
assumed that all patients with unknown clinical outcomes survived, and the results of this analysis are reported
in this section.

All analyses were performed a second time, with the only change being that all patients with unknown clinical
outcomes survived. Figure S39 shows the resulting age‐standardised COVID‐19 in‐hospital fatality rates, which
are directly comparable to those in Figure 5A in the main text. We find that Rio de Janeiro’s COVID‐19 in‐hospital
fatality rates were also the highest among all 14 state capitals under this alternative assumption.
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Figure S38: Age‐standardised COVID‐19 fatality rates in reported unvaccinated patients only. From the denomina‐
tor of COVID‐19 attributable hospitalised residents, we further excluded patients with unknown vaccination sta‐
tus on or after March 29, 2021, and re‐calculated the non‐parametric, smoothed estimates of age‐standardised
COVID‐19 fatality rates. To avoid extrapolation, we only included estimates obtained prior to the last date for
which there was at least one hospital admission per age group. Midpoint estimates (dots) are shown along with
95% confidence intervals (errorbars) for two patient groups depending on reported vaccination status (colour).
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Figure S39: Estimated, weekly age‐standardised COVID‐19 in‐hospital fatality rates, averaged across SARS‐CoV‐2
variants under the assumption that hospitalisations with unknown outcome were discharged. Posterior median
estimates (line) are shown with 95%CrIs (ribbon), and the lowest estimated fatality rates during the observation
period in each state capital (dotted horizontal line).

S9.6 Indicators of disease severity in COVID‐19 attributable hospitalised patients

In‐hospital fatality rates also depend on who, and under what circumstances, severely ill patients are admitted to
hospitals. This prompted us to investigate if the observed fluctuations in COVID‐19 fatality rates could in part be
the result of concomitant changes in the profile of admitted patients. There is limited data on disease severity at
time of hospital admission available in SIVEP‐Gripe, however one indicator that can be readily calculated is the
time between hospital admission and death in patients with a fatal outcome.

Figure S40 shows the weekly proportion of COVID‐19 attributable hospitalisation in residents and non‐residents
without evidence of vaccination prior to hospitalisation and with a fatal outcome, by time to death. We stratified
time to death by number of weeks, shown in fill colours. In Macapá, Manaus, Porto Alegre, and Porto Velho, we
find substantially shorter times to death when the number of COVID‐19 attributable hospital admissions peaked.
This suggests that admitted patients may already have been at a more severe clinical stage when admitted, or
that during times of peak demand healthcare pressure in hospitals both increased fatality rates and led to faster
progression to death. Further data on out‐of‐hospital deaths shows that COVID‐19 attributable out‐of‐hospital
deaths typically occurred during times of peak demand, with the exception of Rio de Janeiro (Supplementary
Figure S3). Together, these data suggest that increased healthcare pressure likely acts to shape in‐hospital fatality
rates through distinct mechanisms, through a combination of both a reduced ability to provide adequate care and
an increase in the average severity of admitted patients.
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Figure S40: Proportion of COVID‐19 attributable hospital admissions that died before 1, 2, 3 weeks or after 3
weeks since admissions date (colors). For reference, the time evolution of weekly hospital admissions is shown
with the black line.
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